ubigen/R/analyze.R

82 lines
3.6 KiB
R
Raw Normal View History

2022-11-30 14:32:40 +01:00
#' Analyze the provided expression data for ubiquitously expressed genes.
#'
#' @param data A `data.table` in normalized, long format. There should be a
#' `gene` column containing Ensembl gene IDs, a `sample` column containing
#' abitrary sample identifiers that are unique per sample and an `expression`
#' column containing the actual expression value for each given combination
#' of gene and sample.
#'
#' @return A `data.table` containing all computed values per gene.
#'
#' @export
analyze <- function(data) {
data[, `:=`(
expression_median = median(expression),
expression_95 = quantile(expression, probs = 0.95)
), by = sample]
# Transform the expression logarithmically. The samples that don't express a
# gene at all will be left out intentionally.
data[expression > 0, expression_log := log2(expression)]
results <- data[, .(
median_expression = median(expression[expression > 0]),
iqr_expression = IQR(expression[expression > 0]),
mean_expression = mean(expression[expression > 0]),
sd_expression = sd(expression[expression > 0]),
median_expression_normalized = median(expression_log, na.rm = TRUE),
iqr_expression_normalized = IQR(expression_log, na.rm = TRUE),
mean_expression_normalized = mean(expression_log, na.rm = TRUE),
sd_expression_normalized = sd(expression_log, na.rm = TRUE),
above_zero = mean(expression > 0.0),
above_threshold = mean(expression > 50.0),
above_median = mean(expression > expression_median),
above_95 = mean(expression > expression_95)
), by = "gene"]
results[, `:=`(
qcv_expression = iqr_expression / median_expression,
qcv_expression_normalized =
iqr_expression_normalized / median_expression_normalized,
cv_expression = sd_expression / mean_expression,
cv_expression_normalized =
sd_expression_normalized / mean_expression_normalized
)]
# Normalize values to the range of 0.0 to 1.0.
results[, `:=`(
median_expression_normalized =
(median_expression_normalized -
min(median_expression_normalized, na.rm = TRUE)) /
(max(median_expression_normalized, na.rm = TRUE) -
min(median_expression_normalized, na.rm = TRUE)),
iqr_expression_normalized =
(iqr_expression_normalized -
min(iqr_expression_normalized, na.rm = TRUE)) /
(max(iqr_expression_normalized, na.rm = TRUE) -
min(iqr_expression_normalized, na.rm = TRUE)),
qcv_expression_normalized =
(qcv_expression_normalized -
min(qcv_expression_normalized, na.rm = TRUE)) /
(max(qcv_expression_normalized, na.rm = TRUE) -
min(qcv_expression_normalized, na.rm = TRUE)),
mean_expression_normalized =
(mean_expression_normalized -
min(mean_expression_normalized, na.rm = TRUE)) /
(max(mean_expression_normalized, na.rm = TRUE) -
min(mean_expression_normalized, na.rm = TRUE)),
sd_expression_normalized =
(sd_expression_normalized -
min(sd_expression_normalized, na.rm = TRUE)) /
(max(sd_expression_normalized, na.rm = TRUE) -
min(sd_expression_normalized, na.rm = TRUE)),
cv_expression_normalized =
(cv_expression_normalized -
min(cv_expression_normalized, na.rm = TRUE)) /
(max(cv_expression_normalized, na.rm = TRUE) -
min(cv_expression_normalized, na.rm = TRUE))
)]
results
}