mirror of
https://github.com/johrpan/ubigen.git
synced 2025-10-26 11:47:24 +01:00
Move analysis into the package
This commit is contained in:
parent
d25bb424b1
commit
698ea5086a
5 changed files with 105 additions and 69 deletions
|
|
@ -1,5 +1,6 @@
|
|||
# Generated by roxygen2: do not edit by hand
|
||||
|
||||
export(analyze)
|
||||
export(rank_genes)
|
||||
export(run_app)
|
||||
import(data.table)
|
||||
|
|
|
|||
81
R/analyze.R
Normal file
81
R/analyze.R
Normal file
|
|
@ -0,0 +1,81 @@
|
|||
#' Analyze the provided expression data for ubiquitously expressed genes.
|
||||
#'
|
||||
#' @param data A `data.table` in normalized, long format. There should be a
|
||||
#' `gene` column containing Ensembl gene IDs, a `sample` column containing
|
||||
#' abitrary sample identifiers that are unique per sample and an `expression`
|
||||
#' column containing the actual expression value for each given combination
|
||||
#' of gene and sample.
|
||||
#'
|
||||
#' @return A `data.table` containing all computed values per gene.
|
||||
#'
|
||||
#' @export
|
||||
analyze <- function(data) {
|
||||
data[, `:=`(
|
||||
expression_median = median(expression),
|
||||
expression_95 = quantile(expression, probs = 0.95)
|
||||
), by = sample]
|
||||
|
||||
# Transform the expression logarithmically. The samples that don't express a
|
||||
# gene at all will be left out intentionally.
|
||||
data[expression > 0, expression_log := log2(expression)]
|
||||
|
||||
results <- data[, .(
|
||||
median_expression = median(expression[expression > 0]),
|
||||
iqr_expression = IQR(expression[expression > 0]),
|
||||
mean_expression = mean(expression[expression > 0]),
|
||||
sd_expression = sd(expression[expression > 0]),
|
||||
median_expression_normalized = median(expression_log, na.rm = TRUE),
|
||||
iqr_expression_normalized = IQR(expression_log, na.rm = TRUE),
|
||||
mean_expression_normalized = mean(expression_log, na.rm = TRUE),
|
||||
sd_expression_normalized = sd(expression_log, na.rm = TRUE),
|
||||
above_zero = mean(expression > 0.0),
|
||||
above_threshold = mean(expression > 50.0),
|
||||
above_median = mean(expression > expression_median),
|
||||
above_95 = mean(expression > expression_95)
|
||||
), by = "gene"]
|
||||
|
||||
results[, `:=`(
|
||||
qcv_expression = iqr_expression / median_expression,
|
||||
qcv_expression_normalized =
|
||||
iqr_expression_normalized / median_expression_normalized,
|
||||
cv_expression = sd_expression / mean_expression,
|
||||
cv_expression_normalized =
|
||||
sd_expression_normalized / mean_expression_normalized
|
||||
)]
|
||||
|
||||
# Normalize values to the range of 0.0 to 1.0.
|
||||
results[, `:=`(
|
||||
median_expression_normalized =
|
||||
(median_expression_normalized -
|
||||
min(median_expression_normalized, na.rm = TRUE)) /
|
||||
(max(median_expression_normalized, na.rm = TRUE) -
|
||||
min(median_expression_normalized, na.rm = TRUE)),
|
||||
iqr_expression_normalized =
|
||||
(iqr_expression_normalized -
|
||||
min(iqr_expression_normalized, na.rm = TRUE)) /
|
||||
(max(iqr_expression_normalized, na.rm = TRUE) -
|
||||
min(iqr_expression_normalized, na.rm = TRUE)),
|
||||
qcv_expression_normalized =
|
||||
(qcv_expression_normalized -
|
||||
min(qcv_expression_normalized, na.rm = TRUE)) /
|
||||
(max(qcv_expression_normalized, na.rm = TRUE) -
|
||||
min(qcv_expression_normalized, na.rm = TRUE)),
|
||||
mean_expression_normalized =
|
||||
(mean_expression_normalized -
|
||||
min(mean_expression_normalized, na.rm = TRUE)) /
|
||||
(max(mean_expression_normalized, na.rm = TRUE) -
|
||||
min(mean_expression_normalized, na.rm = TRUE)),
|
||||
sd_expression_normalized =
|
||||
(sd_expression_normalized -
|
||||
min(sd_expression_normalized, na.rm = TRUE)) /
|
||||
(max(sd_expression_normalized, na.rm = TRUE) -
|
||||
min(sd_expression_normalized, na.rm = TRUE)),
|
||||
cv_expression_normalized =
|
||||
(cv_expression_normalized -
|
||||
min(cv_expression_normalized, na.rm = TRUE)) /
|
||||
(max(cv_expression_normalized, na.rm = TRUE) -
|
||||
min(cv_expression_normalized, na.rm = TRUE))
|
||||
)]
|
||||
|
||||
results
|
||||
}
|
||||
21
man/analyze.Rd
Normal file
21
man/analyze.Rd
Normal file
|
|
@ -0,0 +1,21 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/analyze.R
|
||||
\name{analyze}
|
||||
\alias{analyze}
|
||||
\title{Analyze the provided expression data for ubiquitously expressed genes.}
|
||||
\usage{
|
||||
analyze(data)
|
||||
}
|
||||
\arguments{
|
||||
\item{data}{A \code{data.table} in normalized, long format. There should be a
|
||||
\code{gene} column containing Ensembl gene IDs, a \code{sample} column containing
|
||||
abitrary sample identifiers that are unique per sample and an \code{expression}
|
||||
column containing the actual expression value for each given combination
|
||||
of gene and sample.}
|
||||
}
|
||||
\value{
|
||||
A \code{data.table} containing all computed values per gene.
|
||||
}
|
||||
\description{
|
||||
Analyze the provided expression data for ubiquitously expressed genes.
|
||||
}
|
||||
|
|
@ -5,7 +5,7 @@
|
|||
\alias{genes}
|
||||
\title{A \code{data.table} containig data on genes and their expression behavior.}
|
||||
\format{
|
||||
An object of class \code{data.table} (inherits from \code{data.frame}) with 56156 rows and 20 columns.
|
||||
An object of class \code{data.table} (inherits from \code{data.frame}) with 55507 rows and 20 columns.
|
||||
}
|
||||
\usage{
|
||||
genes
|
||||
|
|
|
|||
|
|
@ -8,72 +8,5 @@ library(here)
|
|||
i_am("scripts/input.R")
|
||||
|
||||
data <- fread(here("scripts", "input", "data_long.csv"))
|
||||
|
||||
data[, `:=`(
|
||||
expression_median = median(expression),
|
||||
expression_95 = quantile(expression, probs = 0.95)
|
||||
), by = sample]
|
||||
|
||||
# Transform the expression logarithmically. The samples that don't express a
|
||||
# gene at all will be left out intentionally.
|
||||
data[expression > 0, expression_log := log2(expression)]
|
||||
|
||||
results <- data[, .(
|
||||
median_expression = median(expression[expression > 0]),
|
||||
iqr_expression = IQR(expression[expression > 0]),
|
||||
mean_expression = mean(expression[expression > 0]),
|
||||
sd_expression = sd(expression[expression > 0]),
|
||||
median_expression_normalized = median(expression_log, na.rm = TRUE),
|
||||
iqr_expression_normalized = IQR(expression_log, na.rm = TRUE),
|
||||
mean_expression_normalized = mean(expression_log, na.rm = TRUE),
|
||||
sd_expression_normalized = sd(expression_log, na.rm = TRUE),
|
||||
above_zero = mean(expression > 0.0),
|
||||
above_threshold = mean(expression > 50.0),
|
||||
above_median = mean(expression > expression_median),
|
||||
above_95 = mean(expression > expression_95)
|
||||
), by = "gene"]
|
||||
|
||||
results[, `:=`(
|
||||
qcv_expression = iqr_expression / median_expression,
|
||||
qcv_expression_normalized =
|
||||
iqr_expression_normalized / median_expression_normalized,
|
||||
cv_expression = sd_expression / mean_expression,
|
||||
cv_expression_normalized =
|
||||
sd_expression_normalized / mean_expression_normalized
|
||||
)]
|
||||
|
||||
# Normalize values to the range of 0.0 to 1.0.
|
||||
results[, `:=`(
|
||||
median_expression_normalized =
|
||||
(median_expression_normalized -
|
||||
min(median_expression_normalized, na.rm = TRUE)) /
|
||||
(max(median_expression_normalized, na.rm = TRUE) -
|
||||
min(median_expression_normalized, na.rm = TRUE)),
|
||||
iqr_expression_normalized =
|
||||
(iqr_expression_normalized -
|
||||
min(iqr_expression_normalized, na.rm = TRUE)) /
|
||||
(max(iqr_expression_normalized, na.rm = TRUE) -
|
||||
min(iqr_expression_normalized, na.rm = TRUE)),
|
||||
qcv_expression_normalized =
|
||||
(qcv_expression_normalized -
|
||||
min(qcv_expression_normalized, na.rm = TRUE)) /
|
||||
(max(qcv_expression_normalized, na.rm = TRUE) -
|
||||
min(qcv_expression_normalized, na.rm = TRUE)),
|
||||
mean_expression_normalized =
|
||||
(mean_expression_normalized -
|
||||
min(mean_expression_normalized, na.rm = TRUE)) /
|
||||
(max(mean_expression_normalized, na.rm = TRUE) -
|
||||
min(mean_expression_normalized, na.rm = TRUE)),
|
||||
sd_expression_normalized =
|
||||
(sd_expression_normalized -
|
||||
min(sd_expression_normalized, na.rm = TRUE)) /
|
||||
(max(sd_expression_normalized, na.rm = TRUE) -
|
||||
min(sd_expression_normalized, na.rm = TRUE)),
|
||||
cv_expression_normalized =
|
||||
(cv_expression_normalized -
|
||||
min(cv_expression_normalized, na.rm = TRUE)) /
|
||||
(max(cv_expression_normalized, na.rm = TRUE) -
|
||||
min(cv_expression_normalized, na.rm = TRUE))
|
||||
)]
|
||||
|
||||
results <- ubigen::analyze(data)
|
||||
fwrite(results, file = here("scripts", "output", "results.csv"))
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue