geposanui/clustering.R

86 lines
2.4 KiB
R
Raw Normal View History

2021-08-25 15:01:18 +02:00
library(data.table)
2021-09-21 16:47:13 +02:00
library(progress)
2021-08-25 15:01:18 +02:00
library(rlog)
2021-09-30 12:54:40 +02:00
#' Perform a cluster analysis.
#'
#' This function will cluster the data using `hclust` and `cutree` (with the
#' specified height). Every cluster with at least two members qualifies for
#' further analysis. Clusters are then ranked based on their size in relation
2021-10-04 09:19:38 +02:00
#' to the total number of possible values (`n`). The return value is a final
#' score between zero and one. Lower ranking clusters contribute less to this
#' score.
clusteriness <- function(data, n, height = 1000000) {
2021-09-30 12:54:40 +02:00
# Cluster the data and compute the cluster sizes.
tree <- hclust(dist(data))
clusters <- cutree(tree, h = height)
cluster_sizes <- sort(tabulate(clusters), decreasing = TRUE)
# Compute the "cluteriness" score.
score <- 0.0
for (i in seq_along(cluster_sizes)) {
cluster_size <- cluster_sizes[i]
if (cluster_size >= 2) {
cluster_score <- cluster_size / n
score <- score + cluster_score / i
}
}
score
}
2021-09-18 23:10:52 +02:00
#' Process genes clustering their distance to telomeres.
2021-08-25 15:01:18 +02:00
#'
2021-09-18 23:10:52 +02:00
#' The return value will be a data.table with the following columns:
#'
#' - `gene` Gene ID of the processed gene.
#' - `cluster_length` Length of the largest cluster.
#' - `cluster_mean` Mean value of the largest cluster.
#' - `cluster_species` List of species contributing to the largest cluster.
2021-08-25 15:01:18 +02:00
#'
2021-09-16 00:06:54 +02:00
#' @param distances Gene distance data to use.
2021-08-29 13:25:12 +02:00
#' @param species_ids IDs of species to include in the analysis.
2021-09-16 00:06:54 +02:00
#' @param gene_ids Genes to include in the computation.
2021-09-18 23:10:52 +02:00
process_clustering <- function(distances, species_ids, gene_ids) {
2021-09-16 00:06:54 +02:00
results <- data.table(gene = gene_ids)
2021-08-25 15:01:18 +02:00
gene_count <- length(gene_ids)
2021-09-21 16:47:13 +02:00
log_info(sprintf(
"Clustering %i genes from %i species",
gene_count,
length(species_ids)
))
progress <- progress_bar$new(
total = gene_count,
format = "Clustering genes [:bar] :percent (ETA :eta)"
)
2021-09-18 23:10:52 +02:00
for (i in 1:gene_count) {
2021-09-21 16:47:13 +02:00
progress$tick()
2021-09-18 23:10:52 +02:00
2021-09-21 16:47:13 +02:00
gene_id <- gene_ids[i]
2021-08-25 15:01:18 +02:00
2021-09-16 00:06:54 +02:00
data <- distances[
2021-08-25 15:01:18 +02:00
species %chin% species_ids & gene == gene_id,
.(species, distance)
]
2021-10-04 09:19:38 +02:00
if (data[, .N] < 10) {
2021-08-25 15:01:18 +02:00
next
}
2021-10-04 09:19:38 +02:00
score <- clusteriness(data[, distance], length(species_ids))
2021-08-25 15:01:18 +02:00
results[
gene == gene_id,
2021-09-30 12:54:40 +02:00
clusteriness := score
2021-08-25 15:01:18 +02:00
]
}
results
}