2021-08-25 15:01:18 +02:00
|
|
|
library(data.table)
|
2021-09-21 16:47:13 +02:00
|
|
|
library(progress)
|
2021-08-25 15:01:18 +02:00
|
|
|
library(rlog)
|
|
|
|
|
|
2021-09-30 12:54:40 +02:00
|
|
|
#' Perform a cluster analysis.
|
|
|
|
|
#'
|
|
|
|
|
#' This function will cluster the data using `hclust` and `cutree` (with the
|
|
|
|
|
#' specified height). Every cluster with at least two members qualifies for
|
|
|
|
|
#' further analysis. Clusters are then ranked based on their size in relation
|
|
|
|
|
#' to the total number of values. The return value is a final score between
|
|
|
|
|
#' zero and one. Lower ranking clusters contribute less to this score.
|
|
|
|
|
clusteriness <- function(data, height = 1000000) {
|
|
|
|
|
# Cluster the data and compute the cluster sizes.
|
|
|
|
|
|
|
|
|
|
tree <- hclust(dist(data))
|
|
|
|
|
clusters <- cutree(tree, h = height)
|
|
|
|
|
cluster_sizes <- sort(tabulate(clusters), decreasing = TRUE)
|
|
|
|
|
|
|
|
|
|
# Compute the "cluteriness" score.
|
|
|
|
|
|
|
|
|
|
score <- 0.0
|
|
|
|
|
n <- length(data)
|
|
|
|
|
|
|
|
|
|
for (i in seq_along(cluster_sizes)) {
|
|
|
|
|
cluster_size <- cluster_sizes[i]
|
|
|
|
|
|
|
|
|
|
if (cluster_size >= 2) {
|
|
|
|
|
cluster_score <- cluster_size / n
|
|
|
|
|
score <- score + cluster_score / i
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
score
|
|
|
|
|
}
|
|
|
|
|
|
2021-09-18 23:10:52 +02:00
|
|
|
#' Process genes clustering their distance to telomeres.
|
2021-08-25 15:01:18 +02:00
|
|
|
#'
|
2021-09-18 23:10:52 +02:00
|
|
|
#' The return value will be a data.table with the following columns:
|
|
|
|
|
#'
|
|
|
|
|
#' - `gene` Gene ID of the processed gene.
|
|
|
|
|
#' - `cluster_length` Length of the largest cluster.
|
|
|
|
|
#' - `cluster_mean` Mean value of the largest cluster.
|
|
|
|
|
#' - `cluster_species` List of species contributing to the largest cluster.
|
2021-08-25 15:01:18 +02:00
|
|
|
#'
|
2021-09-16 00:06:54 +02:00
|
|
|
#' @param distances Gene distance data to use.
|
2021-08-29 13:25:12 +02:00
|
|
|
#' @param species_ids IDs of species to include in the analysis.
|
2021-09-16 00:06:54 +02:00
|
|
|
#' @param gene_ids Genes to include in the computation.
|
2021-09-18 23:10:52 +02:00
|
|
|
process_clustering <- function(distances, species_ids, gene_ids) {
|
2021-09-16 00:06:54 +02:00
|
|
|
results <- data.table(gene = gene_ids)
|
2021-08-25 15:01:18 +02:00
|
|
|
gene_count <- length(gene_ids)
|
|
|
|
|
|
2021-09-21 16:47:13 +02:00
|
|
|
log_info(sprintf(
|
|
|
|
|
"Clustering %i genes from %i species",
|
|
|
|
|
gene_count,
|
|
|
|
|
length(species_ids)
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
progress <- progress_bar$new(
|
|
|
|
|
total = gene_count,
|
|
|
|
|
format = "Clustering genes [:bar] :percent (ETA :eta)"
|
|
|
|
|
)
|
|
|
|
|
|
2021-09-18 23:10:52 +02:00
|
|
|
for (i in 1:gene_count) {
|
2021-09-21 16:47:13 +02:00
|
|
|
progress$tick()
|
2021-09-18 23:10:52 +02:00
|
|
|
|
2021-09-21 16:47:13 +02:00
|
|
|
gene_id <- gene_ids[i]
|
2021-08-25 15:01:18 +02:00
|
|
|
|
2021-09-16 00:06:54 +02:00
|
|
|
data <- distances[
|
2021-08-25 15:01:18 +02:00
|
|
|
species %chin% species_ids & gene == gene_id,
|
|
|
|
|
.(species, distance)
|
|
|
|
|
]
|
|
|
|
|
|
2021-09-16 00:06:54 +02:00
|
|
|
if (data[, .N] < 12) {
|
2021-08-25 15:01:18 +02:00
|
|
|
next
|
|
|
|
|
}
|
|
|
|
|
|
2021-09-30 12:54:40 +02:00
|
|
|
score <- clusteriness(data[, distance])
|
2021-08-25 15:01:18 +02:00
|
|
|
|
|
|
|
|
results[
|
|
|
|
|
gene == gene_id,
|
2021-09-30 12:54:40 +02:00
|
|
|
clusteriness := score
|
2021-08-25 15:01:18 +02:00
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
results
|
|
|
|
|
}
|