2021-08-25 15:01:18 +02:00
|
|
|
library(data.table)
|
|
|
|
|
library(rlog)
|
|
|
|
|
|
2021-09-18 23:10:52 +02:00
|
|
|
#' Process genes clustering their distance to telomeres.
|
2021-08-25 15:01:18 +02:00
|
|
|
#'
|
2021-09-18 23:10:52 +02:00
|
|
|
#' The return value will be a data.table with the following columns:
|
|
|
|
|
#'
|
|
|
|
|
#' - `gene` Gene ID of the processed gene.
|
|
|
|
|
#' - `cluster_length` Length of the largest cluster.
|
|
|
|
|
#' - `cluster_mean` Mean value of the largest cluster.
|
|
|
|
|
#' - `cluster_species` List of species contributing to the largest cluster.
|
2021-08-25 15:01:18 +02:00
|
|
|
#'
|
2021-09-16 00:06:54 +02:00
|
|
|
#' @param distances Gene distance data to use.
|
2021-08-29 13:25:12 +02:00
|
|
|
#' @param species_ids IDs of species to include in the analysis.
|
2021-09-16 00:06:54 +02:00
|
|
|
#' @param gene_ids Genes to include in the computation.
|
2021-09-18 23:10:52 +02:00
|
|
|
process_clustering <- function(distances, species_ids, gene_ids) {
|
2021-09-16 00:06:54 +02:00
|
|
|
results <- data.table(gene = gene_ids)
|
2021-08-25 15:01:18 +02:00
|
|
|
gene_count <- length(gene_ids)
|
|
|
|
|
|
2021-09-18 23:10:52 +02:00
|
|
|
for (i in 1:gene_count) {
|
2021-08-25 15:01:18 +02:00
|
|
|
gene_id <- gene_ids[i]
|
2021-09-18 23:10:52 +02:00
|
|
|
|
|
|
|
|
log_info(sprintf(
|
|
|
|
|
"[%3i%%] Processing gene \"%s\"",
|
|
|
|
|
round(i / gene_count * 100),
|
|
|
|
|
gene_id
|
|
|
|
|
))
|
2021-08-25 15:01:18 +02:00
|
|
|
|
2021-09-16 00:06:54 +02:00
|
|
|
data <- distances[
|
2021-08-25 15:01:18 +02:00
|
|
|
species %chin% species_ids & gene == gene_id,
|
|
|
|
|
.(species, distance)
|
|
|
|
|
]
|
|
|
|
|
|
2021-09-16 00:06:54 +02:00
|
|
|
if (data[, .N] < 12) {
|
2021-08-25 15:01:18 +02:00
|
|
|
next
|
|
|
|
|
}
|
|
|
|
|
|
2021-09-16 00:06:54 +02:00
|
|
|
clusters <- hclust(dist(data[, distance]))
|
2021-08-25 15:01:18 +02:00
|
|
|
clusters_cut <- cutree(clusters, h = 1000000)
|
2021-08-26 14:37:17 +02:00
|
|
|
|
|
|
|
|
# Find the largest cluster
|
|
|
|
|
cluster_indices <- unique(clusters_cut)
|
|
|
|
|
cluster_index <- cluster_indices[
|
|
|
|
|
which.max(tabulate(match(clusters_cut, cluster_indices)))
|
|
|
|
|
]
|
|
|
|
|
|
2021-09-16 00:06:54 +02:00
|
|
|
cluster <- data[which(clusters_cut == cluster_index)]
|
2021-08-25 15:01:18 +02:00
|
|
|
|
|
|
|
|
results[
|
|
|
|
|
gene == gene_id,
|
|
|
|
|
`:=`(
|
|
|
|
|
cluster_length = cluster[, .N],
|
|
|
|
|
cluster_mean = mean(cluster[, distance]),
|
|
|
|
|
cluster_species = list(cluster[, species])
|
|
|
|
|
)
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
results
|
|
|
|
|
}
|