mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-26 18:57:25 +01:00
Rename method source files
This commit is contained in:
parent
ab61f08d0d
commit
c633b17db6
12 changed files with 7 additions and 7 deletions
|
|
@ -1,94 +0,0 @@
|
|||
#' Score genes based on their correlation with the reference genes.
|
||||
#'
|
||||
#' @return An object of class `geposan_method`.
|
||||
#'
|
||||
#' @export
|
||||
correlation <- function() {
|
||||
method(
|
||||
id = "correlation",
|
||||
name = "Correlation",
|
||||
description = "Correlation with reference genes",
|
||||
function(preset, progress) {
|
||||
species_ids <- preset$species_ids
|
||||
gene_ids <- preset$gene_ids
|
||||
reference_gene_ids <- preset$reference_gene_ids
|
||||
|
||||
cached(
|
||||
"correlation",
|
||||
c(species_ids, gene_ids, reference_gene_ids),
|
||||
{ # nolint
|
||||
# Prefilter distances by species.
|
||||
distances <- geposan::distances[species %chin% species_ids]
|
||||
|
||||
# Tranform data to get species as rows and genes as columns.
|
||||
# We construct columns per species, because it requires
|
||||
# fewer iterations, and transpose the table afterwards.
|
||||
|
||||
data <- data.table(gene = gene_ids)
|
||||
|
||||
# Make a column containing distance data for each species.
|
||||
for (species_id in species_ids) {
|
||||
species_data <- distances[
|
||||
species == species_id,
|
||||
.(gene, distance)
|
||||
]
|
||||
|
||||
data <- merge(data, species_data, all.x = TRUE)
|
||||
setnames(data, "distance", species_id)
|
||||
}
|
||||
|
||||
# Transpose to the desired format.
|
||||
data <- transpose(data, make.names = "gene")
|
||||
|
||||
progress(0.33)
|
||||
|
||||
# Take the reference data.
|
||||
reference_data <- data[, ..reference_gene_ids]
|
||||
|
||||
# Perform the correlation between all possible pairs.
|
||||
results <- stats::cor(
|
||||
data[, ..gene_ids],
|
||||
reference_data,
|
||||
use = "pairwise.complete.obs",
|
||||
method = "spearman"
|
||||
)
|
||||
|
||||
results <- data.table(results, keep.rownames = TRUE)
|
||||
setnames(results, "rn", "gene")
|
||||
|
||||
# Remove correlations between the reference genes
|
||||
# themselves.
|
||||
for (reference_gene_id in reference_gene_ids) {
|
||||
column <- quote(reference_gene_id)
|
||||
results[gene == reference_gene_id, eval(column) := NA]
|
||||
}
|
||||
|
||||
progress(0.66)
|
||||
|
||||
# Find the highes correlation.
|
||||
results[,
|
||||
max_correlation := max(.SD, na.rm = TRUE),
|
||||
.SDcols = reference_gene_ids,
|
||||
by = gene
|
||||
]
|
||||
|
||||
# Normalize scores.
|
||||
results[,
|
||||
score := (max_correlation - min(max_correlation)) /
|
||||
(max(max_correlation) - min(max_correlation))
|
||||
]
|
||||
|
||||
# Normalize scores.
|
||||
|
||||
results[, .(gene, score)]
|
||||
|
||||
result(
|
||||
method = "correlation",
|
||||
scores = results[, .(gene, score)],
|
||||
details = list(all_correlations = results)
|
||||
)
|
||||
}
|
||||
)
|
||||
}
|
||||
)
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue