mirror of
https://github.com/johrpan/ubigen.git
synced 2025-10-26 19:57:24 +01:00
229 lines
5.7 KiB
R
229 lines
5.7 KiB
R
#' Server implementing the main user interface.
|
|
#' @noRd
|
|
server <- function(input, output, session) {
|
|
ranked_data <- reactive({
|
|
rank_genes(
|
|
cross_sample_metric = input$cross_sample_metric,
|
|
cross_sample_weight = input$cross_sample_weight,
|
|
mean_expression_weight = input$mean_expression,
|
|
sd_expression_weight = input$sd_expression
|
|
)
|
|
})
|
|
|
|
custom_genes <- gene_selector_server("custom_genes") |> debounce(500)
|
|
|
|
output$overview_plot <- plotly::renderPlotly(overview_plot(
|
|
ranked_data(),
|
|
highlighted_genes = custom_genes()
|
|
))
|
|
|
|
observeEvent(custom_genes(),
|
|
{ # nolint
|
|
if (length(custom_genes()) > 0) {
|
|
updateTabsetPanel(session, "results_panel", selected = "custom_genes")
|
|
} else if (input$results_panel == "custom_genes") {
|
|
updateTabsetPanel(session, "results_panel", selected = "top_genes")
|
|
}
|
|
},
|
|
ignoreNULL = FALSE
|
|
)
|
|
|
|
output$custom_genes_synopsis <- renderText({
|
|
comparison_gene_ids <- custom_genes()
|
|
|
|
if (length(comparison_gene_ids) > 1) {
|
|
reference <- ranked_data()[!gene %chin% comparison_gene_ids, score]
|
|
comparison <- ranked_data()[gene %chin% comparison_gene_ids, score]
|
|
|
|
reference_median <- format(
|
|
round(stats::median(reference), digits = 3),
|
|
nsmall = 3
|
|
)
|
|
|
|
comparison_median <- format(
|
|
round(stats::median(comparison), digits = 3),
|
|
nsmall = 3
|
|
)
|
|
|
|
test_result <- stats::wilcox.test(
|
|
x = comparison,
|
|
y = reference,
|
|
alternative = "greater",
|
|
conf.int = TRUE
|
|
)
|
|
|
|
p_value <- format(
|
|
round(test_result$p.value, digits = 4),
|
|
nsmall = 4,
|
|
scientific = FALSE
|
|
)
|
|
|
|
lower <- format(round(test_result$conf.int[1], digits = 3), nsmall = 3)
|
|
upper <- format(round(test_result$conf.int[2], digits = 3), nsmall = 3)
|
|
|
|
HTML(glue::glue(
|
|
"The p-value with the alternative hypothesis that your genes have ",
|
|
"higher scores than other genes is <b>{p_value}</b>. This value ",
|
|
"was computed using a Wilcoxon rank sum test. Based on a 95% ",
|
|
"confidence, the difference in scores is between <b>{lower}</b> and ",
|
|
"<b>{upper}</b>. The median score of your genes is ",
|
|
"<b>{comparison_median}</b> compared to a median score of ",
|
|
"<b>{reference_median}</b> of the other genes."
|
|
))
|
|
}
|
|
})
|
|
|
|
output$custom_genes_boxplot <- plotly::renderPlotly(
|
|
box_plot(ranked_data(), custom_genes())
|
|
)
|
|
|
|
output$custom_genes_details <- DT::renderDT({
|
|
genes_table(ranked_data()[gene %chin% custom_genes()])
|
|
})
|
|
|
|
output$scores_plot <- plotly::renderPlotly(scores_plot(
|
|
ranked_data(),
|
|
highlighted_genes = custom_genes()
|
|
))
|
|
|
|
selected_genes <- reactive({
|
|
selected_points <- plotly::event_data("plotly_selected")
|
|
ranked_data()[rank %in% selected_points$x]
|
|
})
|
|
|
|
output$selected_genes <- DT::renderDataTable({
|
|
data <- if (nrow(selected_genes()) > 0) {
|
|
selected_genes()
|
|
} else {
|
|
ranked_data()
|
|
}
|
|
|
|
genes_table(data)
|
|
})
|
|
|
|
gsea_genes <- reactive({
|
|
sort(if (input$gsea_set == "top") {
|
|
ranked_data()[rank >= input$gsea_ranks, gene]
|
|
} else if (input$gsea_set == "selected") {
|
|
selected_genes()[, gene]
|
|
} else {
|
|
custom_genes()
|
|
})
|
|
})
|
|
|
|
gsea_result <- reactive({
|
|
withProgress(
|
|
message = "Querying g:Profiler",
|
|
value = 0.0,
|
|
{ # nolint
|
|
setProgress(0.2)
|
|
gprofiler2::gost(gsea_genes())
|
|
}
|
|
)
|
|
}) |>
|
|
bindCache(gsea_genes()) |>
|
|
bindEvent(input$gsea_run, ignoreNULL = FALSE)
|
|
|
|
output$gsea_plot <- plotly::renderPlotly({
|
|
gprofiler2::gostplot(gsea_result(), interactive = TRUE)
|
|
})
|
|
|
|
output$gsea_details <- DT::renderDT({
|
|
data <- data.table(gsea_result()$result)
|
|
setorder(data, p_value)
|
|
|
|
data[, total_ratio := term_size / effective_domain_size]
|
|
data[, query_ratio := intersection_size / query_size]
|
|
data[, increase := (query_ratio - total_ratio) / total_ratio]
|
|
|
|
data <- data[, .(
|
|
source,
|
|
term_name,
|
|
total_ratio,
|
|
query_ratio,
|
|
increase,
|
|
p_value
|
|
)]
|
|
|
|
DT::datatable(
|
|
data,
|
|
rownames = FALSE,
|
|
colnames = c(
|
|
"Source",
|
|
"Term",
|
|
"Total ratio",
|
|
"Query ratio",
|
|
"Increase",
|
|
"p-value"
|
|
),
|
|
options = list(
|
|
pageLength = 25
|
|
)
|
|
) |>
|
|
DT::formatRound("p_value", digits = 4) |>
|
|
DT::formatPercentage(
|
|
c("total_ratio", "query_ratio", "increase"),
|
|
digits = 2
|
|
)
|
|
})
|
|
|
|
output$gsea_plot_ranking <- plotly::renderPlotly(gsea_plot_ranking)
|
|
}
|
|
|
|
#' Create a displayable data table from the gene results data.
|
|
#' @noRd
|
|
genes_table <- function(data) {
|
|
data <- data[, .(
|
|
"Gene" = glue::glue_data(
|
|
data,
|
|
"<a href=\"https://gtexportal.org/home/gene/{hgnc_name}\" ",
|
|
"target=\"_blank\">{hgnc_name}</a>"
|
|
),
|
|
"Rank" = rank,
|
|
"Percentile" = percentile,
|
|
"Score" = score,
|
|
"Median" = median_expression,
|
|
"Mean" = mean_expression,
|
|
"Standard deviation" = sd_expression,
|
|
"Expressed" = above_zero,
|
|
"Above median" = above_median,
|
|
"Above 95%" = above_95
|
|
)]
|
|
|
|
DT::datatable(
|
|
data,
|
|
options = list(
|
|
buttons = list(
|
|
list(
|
|
extend = "copy",
|
|
text = "Copy to clipboard"
|
|
),
|
|
list(
|
|
extend = "csv",
|
|
text = "Download CSV"
|
|
)
|
|
),
|
|
dom = "fBrtip",
|
|
pageLength = 100
|
|
),
|
|
rownames = FALSE,
|
|
escape = FALSE,
|
|
selection = "none",
|
|
extensions = "Buttons"
|
|
) |>
|
|
DT::formatPercentage(
|
|
c(
|
|
"Percentile",
|
|
"Score",
|
|
"Expressed",
|
|
"Above median",
|
|
"Above 95%"
|
|
),
|
|
digits = 2,
|
|
) |>
|
|
DT::formatRound(c(
|
|
"Median",
|
|
"Mean",
|
|
"Standard deviation"
|
|
))
|
|
}
|