mirror of
https://github.com/johrpan/ubigen.git
synced 2025-10-26 19:57:24 +01:00
Allow setting a custom default dataset
This commit is contained in:
parent
c14208c2b2
commit
995b31646e
4 changed files with 203 additions and 177 deletions
15
R/app.R
15
R/app.R
|
|
@ -2,8 +2,19 @@
|
||||||
#'
|
#'
|
||||||
#' @param host The hostname to serve the application on.
|
#' @param host The hostname to serve the application on.
|
||||||
#' @param port The port to serve the application on.
|
#' @param port The port to serve the application on.
|
||||||
|
#' @param custom_dataset This allows to set a custom dataset (return value of
|
||||||
|
#' [analyze()]) as the default dataset of the UI.
|
||||||
#'
|
#'
|
||||||
#' @export
|
#' @export
|
||||||
run_app <- function(host = "127.0.0.1", port = 3464) {
|
run_app <- function(host = "127.0.0.1",
|
||||||
runApp(shinyApp(ui, server), host = host, port = port)
|
port = 3464,
|
||||||
|
custom_dataset = NULL) {
|
||||||
|
runApp(
|
||||||
|
shinyApp(
|
||||||
|
ui(custom_dataset = custom_dataset),
|
||||||
|
server(custom_dataset = custom_dataset)
|
||||||
|
),
|
||||||
|
host = host,
|
||||||
|
port = port
|
||||||
|
)
|
||||||
}
|
}
|
||||||
|
|
|
||||||
340
R/server.R
340
R/server.R
|
|
@ -1,184 +1,188 @@
|
||||||
#' Server implementing the main user interface.
|
#' Server implementing the main user interface.
|
||||||
#' @noRd
|
#' @noRd
|
||||||
server <- function(input, output, session) {
|
server <- function(custom_dataset = NULL) {
|
||||||
dataset <- reactive({
|
function(input, output, session) {
|
||||||
analysis <- if (input$dataset == "gtex_tissues") {
|
dataset <- reactive({
|
||||||
ubigen::gtex_tissues
|
analysis <- if (input$dataset == "gtex_tissues") {
|
||||||
} else if (input$dataset == "hpa_tissues") {
|
ubigen::gtex_tissues
|
||||||
ubigen::hpa_tissues
|
} else if (input$dataset == "hpa_tissues") {
|
||||||
} else {
|
ubigen::hpa_tissues
|
||||||
ubigen::gtex_all
|
} else if (input$dataset == "gtex_all") {
|
||||||
}
|
ubigen::gtex_all
|
||||||
|
} else {
|
||||||
merge(analysis, ubigen::genes, by = "gene")
|
custom_dataset
|
||||||
})
|
|
||||||
|
|
||||||
ranked_data <- reactive({
|
|
||||||
rank_genes(
|
|
||||||
data = dataset(),
|
|
||||||
cross_sample_metric = input$cross_sample_metric,
|
|
||||||
cross_sample_weight = input$cross_sample_weight,
|
|
||||||
level_metric = input$level_metric,
|
|
||||||
level_weight = input$level_weight,
|
|
||||||
variation_metric = input$variation_metric,
|
|
||||||
variation_weight = input$variation_weight
|
|
||||||
)
|
|
||||||
})
|
|
||||||
|
|
||||||
custom_genes <- gene_selector_server("custom_genes") |> debounce(500)
|
|
||||||
|
|
||||||
output$overview_plot <- plotly::renderPlotly(overview_plot(
|
|
||||||
ranked_data(),
|
|
||||||
highlighted_genes = custom_genes()
|
|
||||||
))
|
|
||||||
|
|
||||||
observeEvent(custom_genes(),
|
|
||||||
{ # nolint
|
|
||||||
if (length(custom_genes()) > 0) {
|
|
||||||
updateTabsetPanel(session, "results_panel", selected = "custom_genes")
|
|
||||||
} else if (input$results_panel == "custom_genes") {
|
|
||||||
updateTabsetPanel(session, "results_panel", selected = "top_genes")
|
|
||||||
}
|
}
|
||||||
},
|
|
||||||
ignoreNULL = FALSE
|
|
||||||
)
|
|
||||||
|
|
||||||
output$custom_genes_synopsis <- renderText({
|
merge(analysis, ubigen::genes, by = "gene")
|
||||||
comparison_gene_ids <- custom_genes()
|
|
||||||
|
|
||||||
if (length(comparison_gene_ids) > 1) {
|
|
||||||
reference <- ranked_data()[!gene %chin% comparison_gene_ids, score]
|
|
||||||
comparison <- ranked_data()[gene %chin% comparison_gene_ids, score]
|
|
||||||
|
|
||||||
reference_median <- format(
|
|
||||||
round(stats::median(reference), digits = 3),
|
|
||||||
nsmall = 3
|
|
||||||
)
|
|
||||||
|
|
||||||
comparison_median <- format(
|
|
||||||
round(stats::median(comparison), digits = 3),
|
|
||||||
nsmall = 3
|
|
||||||
)
|
|
||||||
|
|
||||||
test_result <- stats::wilcox.test(
|
|
||||||
x = comparison,
|
|
||||||
y = reference,
|
|
||||||
alternative = "greater",
|
|
||||||
conf.int = TRUE
|
|
||||||
)
|
|
||||||
|
|
||||||
p_value <- format(
|
|
||||||
round(test_result$p.value, digits = 4),
|
|
||||||
nsmall = 4,
|
|
||||||
scientific = FALSE
|
|
||||||
)
|
|
||||||
|
|
||||||
lower <- format(round(test_result$conf.int[1], digits = 3), nsmall = 3)
|
|
||||||
upper <- format(round(test_result$conf.int[2], digits = 3), nsmall = 3)
|
|
||||||
|
|
||||||
HTML(glue::glue(
|
|
||||||
"The p-value with the alternative hypothesis that your genes have ",
|
|
||||||
"higher scores than other genes is <b>{p_value}</b>. This value ",
|
|
||||||
"was computed using a Wilcoxon rank sum test. Based on a 95% ",
|
|
||||||
"confidence, the difference in scores is between <b>{lower}</b> and ",
|
|
||||||
"<b>{upper}</b>. The median score of your genes is ",
|
|
||||||
"<b>{comparison_median}</b> compared to a median score of ",
|
|
||||||
"<b>{reference_median}</b> of the other genes."
|
|
||||||
))
|
|
||||||
}
|
|
||||||
})
|
|
||||||
|
|
||||||
output$custom_genes_boxplot <- plotly::renderPlotly(
|
|
||||||
box_plot(ranked_data(), custom_genes())
|
|
||||||
)
|
|
||||||
|
|
||||||
genes_table_server("custom_genes", reactive({
|
|
||||||
ranked_data()[gene %chin% custom_genes()]
|
|
||||||
}))
|
|
||||||
|
|
||||||
output$scores_plot <- plotly::renderPlotly(scores_plot(
|
|
||||||
ranked_data(),
|
|
||||||
highlighted_genes = custom_genes()
|
|
||||||
))
|
|
||||||
|
|
||||||
selected_genes <- reactive({
|
|
||||||
selected_points <- plotly::event_data("plotly_selected")
|
|
||||||
ranked_data()[rank %in% selected_points$x]
|
|
||||||
})
|
|
||||||
|
|
||||||
genes_table_server("selected_genes", reactive({
|
|
||||||
if (nrow(selected_genes()) > 0) {
|
|
||||||
selected_genes()
|
|
||||||
} else {
|
|
||||||
ranked_data()
|
|
||||||
}
|
|
||||||
}))
|
|
||||||
|
|
||||||
gsea_genes <- reactive({
|
|
||||||
sort(if (input$gsea_set == "top") {
|
|
||||||
ranked_data()[rank >= input$gsea_ranks, gene]
|
|
||||||
} else if (input$gsea_set == "selected") {
|
|
||||||
selected_genes()[, gene]
|
|
||||||
} else {
|
|
||||||
custom_genes()
|
|
||||||
})
|
})
|
||||||
})
|
|
||||||
|
|
||||||
gsea_result <- reactive({
|
ranked_data <- reactive({
|
||||||
withProgress(
|
rank_genes(
|
||||||
message = "Querying g:Profiler",
|
data = dataset(),
|
||||||
value = 0.0,
|
cross_sample_metric = input$cross_sample_metric,
|
||||||
|
cross_sample_weight = input$cross_sample_weight,
|
||||||
|
level_metric = input$level_metric,
|
||||||
|
level_weight = input$level_weight,
|
||||||
|
variation_metric = input$variation_metric,
|
||||||
|
variation_weight = input$variation_weight
|
||||||
|
)
|
||||||
|
})
|
||||||
|
|
||||||
|
custom_genes <- gene_selector_server("custom_genes") |> debounce(500)
|
||||||
|
|
||||||
|
output$overview_plot <- plotly::renderPlotly(overview_plot(
|
||||||
|
ranked_data(),
|
||||||
|
highlighted_genes = custom_genes()
|
||||||
|
))
|
||||||
|
|
||||||
|
observeEvent(custom_genes(),
|
||||||
{ # nolint
|
{ # nolint
|
||||||
setProgress(0.2)
|
if (length(custom_genes()) > 0) {
|
||||||
gprofiler2::gost(gsea_genes())
|
updateTabsetPanel(session, "results_panel", selected = "custom_genes")
|
||||||
}
|
} else if (input$results_panel == "custom_genes") {
|
||||||
|
updateTabsetPanel(session, "results_panel", selected = "top_genes")
|
||||||
|
}
|
||||||
|
},
|
||||||
|
ignoreNULL = FALSE
|
||||||
)
|
)
|
||||||
}) |>
|
|
||||||
bindCache(gsea_genes()) |>
|
|
||||||
bindEvent(input$gsea_run, ignoreNULL = FALSE)
|
|
||||||
|
|
||||||
output$gsea_plot <- plotly::renderPlotly({
|
output$custom_genes_synopsis <- renderText({
|
||||||
gprofiler2::gostplot(gsea_result(), interactive = TRUE)
|
comparison_gene_ids <- custom_genes()
|
||||||
})
|
|
||||||
|
|
||||||
output$gsea_details <- DT::renderDT({
|
if (length(comparison_gene_ids) > 1) {
|
||||||
data <- data.table(gsea_result()$result)
|
reference <- ranked_data()[!gene %chin% comparison_gene_ids, score]
|
||||||
setorder(data, p_value)
|
comparison <- ranked_data()[gene %chin% comparison_gene_ids, score]
|
||||||
|
|
||||||
data[, total_ratio := term_size / effective_domain_size]
|
reference_median <- format(
|
||||||
data[, query_ratio := intersection_size / query_size]
|
round(stats::median(reference), digits = 3),
|
||||||
data[, increase := (query_ratio - total_ratio) / total_ratio]
|
nsmall = 3
|
||||||
|
)
|
||||||
|
|
||||||
data <- data[, .(
|
comparison_median <- format(
|
||||||
source,
|
round(stats::median(comparison), digits = 3),
|
||||||
term_name,
|
nsmall = 3
|
||||||
total_ratio,
|
)
|
||||||
query_ratio,
|
|
||||||
increase,
|
|
||||||
p_value
|
|
||||||
)]
|
|
||||||
|
|
||||||
DT::datatable(
|
test_result <- stats::wilcox.test(
|
||||||
data,
|
x = comparison,
|
||||||
rownames = FALSE,
|
y = reference,
|
||||||
colnames = c(
|
alternative = "greater",
|
||||||
"Source",
|
conf.int = TRUE
|
||||||
"Term",
|
)
|
||||||
"Total ratio",
|
|
||||||
"Query ratio",
|
p_value <- format(
|
||||||
"Increase",
|
round(test_result$p.value, digits = 4),
|
||||||
"p-value"
|
nsmall = 4,
|
||||||
),
|
scientific = FALSE
|
||||||
options = list(
|
)
|
||||||
pageLength = 25
|
|
||||||
|
lower <- format(round(test_result$conf.int[1], digits = 3), nsmall = 3)
|
||||||
|
upper <- format(round(test_result$conf.int[2], digits = 3), nsmall = 3)
|
||||||
|
|
||||||
|
HTML(glue::glue(
|
||||||
|
"The p-value with the alternative hypothesis that your genes have ",
|
||||||
|
"higher scores than other genes is <b>{p_value}</b>. This value ",
|
||||||
|
"was computed using a Wilcoxon rank sum test. Based on a 95% ",
|
||||||
|
"confidence, the difference in scores is between <b>{lower}</b> and ",
|
||||||
|
"<b>{upper}</b>. The median score of your genes is ",
|
||||||
|
"<b>{comparison_median}</b> compared to a median score of ",
|
||||||
|
"<b>{reference_median}</b> of the other genes."
|
||||||
|
))
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
output$custom_genes_boxplot <- plotly::renderPlotly(
|
||||||
|
box_plot(ranked_data(), custom_genes())
|
||||||
|
)
|
||||||
|
|
||||||
|
genes_table_server("custom_genes", reactive({
|
||||||
|
ranked_data()[gene %chin% custom_genes()]
|
||||||
|
}))
|
||||||
|
|
||||||
|
output$scores_plot <- plotly::renderPlotly(scores_plot(
|
||||||
|
ranked_data(),
|
||||||
|
highlighted_genes = custom_genes()
|
||||||
|
))
|
||||||
|
|
||||||
|
selected_genes <- reactive({
|
||||||
|
selected_points <- plotly::event_data("plotly_selected")
|
||||||
|
ranked_data()[rank %in% selected_points$x]
|
||||||
|
})
|
||||||
|
|
||||||
|
genes_table_server("selected_genes", reactive({
|
||||||
|
if (nrow(selected_genes()) > 0) {
|
||||||
|
selected_genes()
|
||||||
|
} else {
|
||||||
|
ranked_data()
|
||||||
|
}
|
||||||
|
}))
|
||||||
|
|
||||||
|
gsea_genes <- reactive({
|
||||||
|
sort(if (input$gsea_set == "top") {
|
||||||
|
ranked_data()[rank >= input$gsea_ranks, gene]
|
||||||
|
} else if (input$gsea_set == "selected") {
|
||||||
|
selected_genes()[, gene]
|
||||||
|
} else {
|
||||||
|
custom_genes()
|
||||||
|
})
|
||||||
|
})
|
||||||
|
|
||||||
|
gsea_result <- reactive({
|
||||||
|
withProgress(
|
||||||
|
message = "Querying g:Profiler",
|
||||||
|
value = 0.0,
|
||||||
|
{ # nolint
|
||||||
|
setProgress(0.2)
|
||||||
|
gprofiler2::gost(gsea_genes())
|
||||||
|
}
|
||||||
)
|
)
|
||||||
) |>
|
}) |>
|
||||||
DT::formatRound("p_value", digits = 4) |>
|
bindCache(gsea_genes()) |>
|
||||||
DT::formatPercentage(
|
bindEvent(input$gsea_run, ignoreNULL = FALSE)
|
||||||
c("total_ratio", "query_ratio", "increase"),
|
|
||||||
digits = 2
|
|
||||||
)
|
|
||||||
})
|
|
||||||
|
|
||||||
output$gsea_plot_ranking <- plotly::renderPlotly(gsea_plot_ranking)
|
output$gsea_plot <- plotly::renderPlotly({
|
||||||
|
gprofiler2::gostplot(gsea_result(), interactive = TRUE)
|
||||||
|
})
|
||||||
|
|
||||||
|
output$gsea_details <- DT::renderDT({
|
||||||
|
data <- data.table(gsea_result()$result)
|
||||||
|
setorder(data, p_value)
|
||||||
|
|
||||||
|
data[, total_ratio := term_size / effective_domain_size]
|
||||||
|
data[, query_ratio := intersection_size / query_size]
|
||||||
|
data[, increase := (query_ratio - total_ratio) / total_ratio]
|
||||||
|
|
||||||
|
data <- data[, .(
|
||||||
|
source,
|
||||||
|
term_name,
|
||||||
|
total_ratio,
|
||||||
|
query_ratio,
|
||||||
|
increase,
|
||||||
|
p_value
|
||||||
|
)]
|
||||||
|
|
||||||
|
DT::datatable(
|
||||||
|
data,
|
||||||
|
rownames = FALSE,
|
||||||
|
colnames = c(
|
||||||
|
"Source",
|
||||||
|
"Term",
|
||||||
|
"Total ratio",
|
||||||
|
"Query ratio",
|
||||||
|
"Increase",
|
||||||
|
"p-value"
|
||||||
|
),
|
||||||
|
options = list(
|
||||||
|
pageLength = 25
|
||||||
|
)
|
||||||
|
) |>
|
||||||
|
DT::formatRound("p_value", digits = 4) |>
|
||||||
|
DT::formatPercentage(
|
||||||
|
c("total_ratio", "query_ratio", "increase"),
|
||||||
|
digits = 2
|
||||||
|
)
|
||||||
|
})
|
||||||
|
|
||||||
|
output$gsea_plot_ranking <- plotly::renderPlotly(gsea_plot_ranking)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
|
||||||
20
R/ui.R
20
R/ui.R
|
|
@ -1,6 +1,6 @@
|
||||||
#' Function for creating the main user interface.
|
#' Function for creating the main user interface.
|
||||||
#' @noRd
|
#' @noRd
|
||||||
ui <- function() {
|
ui <- function(custom_dataset = NULL) {
|
||||||
div(
|
div(
|
||||||
custom_css(),
|
custom_css(),
|
||||||
rclipboard::rclipboardSetup(),
|
rclipboard::rclipboardSetup(),
|
||||||
|
|
@ -22,11 +22,19 @@ ui <- function() {
|
||||||
selectInput(
|
selectInput(
|
||||||
"dataset",
|
"dataset",
|
||||||
label = strong("Expression dataset"),
|
label = strong("Expression dataset"),
|
||||||
list(
|
{
|
||||||
"GTEx (across tissues and conditions)" = "gtex_all",
|
choices <- list(
|
||||||
"GTEx (across tissues)" = "gtex_tissues",
|
"GTEx (across tissues and conditions)" = "gtex_all",
|
||||||
"Human Protein Atlas (across tissues)" = "hpa_tissues"
|
"GTEx (across tissues)" = "gtex_tissues",
|
||||||
)
|
"Human Protein Atlas (across tissues)" = "hpa_tissues"
|
||||||
|
)
|
||||||
|
|
||||||
|
if (!is.null(custom_dataset)) {
|
||||||
|
c(list("Custom dataset" = "custom"), choices)
|
||||||
|
} else {
|
||||||
|
choices
|
||||||
|
}
|
||||||
|
}
|
||||||
),
|
),
|
||||||
selectInput(
|
selectInput(
|
||||||
"cross_sample_metric",
|
"cross_sample_metric",
|
||||||
|
|
|
||||||
|
|
@ -4,12 +4,15 @@
|
||||||
\alias{run_app}
|
\alias{run_app}
|
||||||
\title{Run the application server.}
|
\title{Run the application server.}
|
||||||
\usage{
|
\usage{
|
||||||
run_app(host = "127.0.0.1", port = 3464)
|
run_app(host = "127.0.0.1", port = 3464, custom_dataset = NULL)
|
||||||
}
|
}
|
||||||
\arguments{
|
\arguments{
|
||||||
\item{host}{The hostname to serve the application on.}
|
\item{host}{The hostname to serve the application on.}
|
||||||
|
|
||||||
\item{port}{The port to serve the application on.}
|
\item{port}{The port to serve the application on.}
|
||||||
|
|
||||||
|
\item{custom_dataset}{This allows to set a custom dataset (return value of
|
||||||
|
\code{\link[=analyze]{analyze()}}) as the default dataset of the UI.}
|
||||||
}
|
}
|
||||||
\description{
|
\description{
|
||||||
Run the application server.
|
Run the application server.
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue