scripts: Add normal GSEA

This commit is contained in:
Elias Projahn 2024-12-01 17:04:19 +01:00
parent 54b3315041
commit 7a21e15c0e
2 changed files with 201 additions and 45 deletions

View file

@ -1,59 +1,156 @@
# This script performs a gene set enrichment analysis (GSEA) across the whole
# ranking of ubiquituos genes using g:Profiler.
# Size of each gene bucket. The GSEA is done once for each bucket within the
# ranking.
bucket_size <- 500
library(data.table)
library(here)
i_am("scripts/gsea.R")
file_path <- here("scripts", "output", "ubigen_gsea.Rds")
image_path <- here("scripts", "output", "ubigen_gsea.svg")
# The result will be saved in `file_path` to avoid unnecessary API calls.
result <- if (file.exists(file_path)) {
readRDS(file_path)
} else {
data <- copy(ubigen::genes)
data[, bucket := ceiling(rank / bucket_size)]
ranking_gtex <- ubigen::rank_genes(ubigen::gtex_all)
ranking_cmap <- ubigen::rank_genes(ubigen::cmap)
result <- data[, .(analysis = list(gprofiler2::gost(gene))), by = bucket]
saveRDS(result, file = file_path)
data <- merge(
ranking_gtex[, .(gene, score, percentile)],
ranking_cmap[, .(gene, score, percentile)],
by = "gene",
suffixes = c(x = "_gtex", y = "_cmap")
)
result
data[, score := score_gtex * score_cmap]
setorder(data, -score)
data[, percentile := (.N - .I) / .N]
gsea_1_0 <- gprofiler2::gost(
data[percentile_gtex >= 0.95 & percentile_cmap < 0.95, gene],
domain_scope = "custom_annotated",
custom_bg = data[, gene]
)
gsea_1_1 <- gprofiler2::gost(
data[percentile_gtex >= 0.95 & percentile_cmap >= 0.95, gene],
domain_scope = "custom_annotated",
custom_bg = data[, gene]
)
# This code is based on gostplot.R from the gprofiler2 package.
gsea_sources <- c(
"GO:MF",
"GO:BP",
"GO:CC",
"KEGG",
"REAC",
"WP",
"TF",
"MIRNA",
"HPA",
"CORUM",
"HP"
)
gsea_source_colors <- data.table(
source = gsea_sources,
color = c(
"#dc3912",
"#ff9900",
"#109618",
"#dd4477",
"#3366cc",
"#0099c6",
"#5574a6",
"#22aa99",
"#6633cc",
"#66aa00",
"#990099"
)
)
lerp <- function(x) {
(x - min(x)) / (max(x) - min(x))
}
result[, result := lapply(analysis, function(a) a$result)]
result <- result[, rbindlist(result), by = bucket]
gsea_plot <- function(
gsea_result,
sources = c("GO:MF", "GO:BP", "GO:CC", "KEGG", "REAC", "WP", "TF", "HP")) {
source_data <- gsea_source_colors[source %chin% sources]
data <- result[, .(count = .N), by = c("bucket", "source")]
data[, total := sum(count), by = bucket]
source_data[,
width := gsea_result$meta$result_metadata[[source]]$number_of_terms,
by = source
]
smooth_model <- loess(total ~ bucket, data, span = 0.3)
bucket_smoothed <- seq(1, nrow(data), 0.1)
total_smoothed <- predict(smooth_model, bucket_smoothed)
source_data[seq_len(.N - 1), width := width + 2000]
source_data[, source_x := cumsum(width) - width]
source_data[, source_center := source_x + width / 2]
fig <- plotly::plot_ly(data) |>
plotly::add_bars(
x = ~bucket,
y = ~count,
color = ~source
) |>
plotly::add_lines(
x = bucket_smoothed,
y = total_smoothed,
name = "All (smoothed)"
data <- gsea_result$result |> as.data.table()
data <- merge(data, source_data, by = "source")
data[, x := source_x + source_order]
data[, y := -log10(p_value)]
data[y > 16, y := 17]
plotly::plot_ly() |>
plotly::add_markers(
data = data,
x = ~x,
y = ~y,
text = ~term_name,
marker = list(
size = ~ 4 + 6 * lerp(term_size),
color = ~color,
line = list(width = 0)
),
cliponaxis = FALSE
) |>
plotly::layout(
xaxis = list(title = glue::glue("Bucket of genes (n = {bucket_size})")),
yaxis = list(title = "Number of associated terms"),
barmode = "stack",
legend = list(title = list(text = "<b>Source of term</b>"))
xaxis = list(
title = "",
range = c(0, source_data[.N, source_x + width]),
tickmode = "array",
tickvals = source_data[, source_center],
ticktext = source_data[, source],
showgrid = FALSE,
zeroline = FALSE
),
yaxis = list(
title = "log₁₀(p)",
range = c(0, 18),
tickmode = "array",
tickvals = c(2, 4, 6, 8, 10, 12, 14, 16),
ticktext = c("2", "4", "6", "8", "10", "12", "14", "≥ 16")
),
font = list(size = 8),
margin = list(
pad = 2,
l = 0,
r = 0,
t = 0,
b = 0
)
)
}
plotly::save_image(fig, image_path, width = 1200, height = 800)
fig_gsea_1_0 <- gsea_plot(gsea_1_0)
fig_gsea_1_1 <- gsea_plot(gsea_1_1)
gsea_plot_ranking <- fig
usethis::use_data(gsea_plot_ranking, internal = TRUE, overwrite = TRUE)
# Plotly specifies all sizes in pixels, including font size. Because of
# that, we can actually think of these pixels as points. One point is defined as
# 1/72 inch and SVG uses 96 DPI as the standard resolution.
#
# 1 plotly pixel = 1 point = 1/72 inch = 1 1/3 actual pixels
#
# So, we specify width and height in points (= plotly pixels) and scale up the
# image by 96/72 to convert everything from points to pixels at 96 DPI.
plotly::save_image(
fig_gsea_1_0,
file = here("scripts/output/gsea_1_0.svg"),
width = 6.27 * 72,
height = 3.135 * 72,
scale = 96 / 72
)
plotly::save_image(
fig_gsea_1_1,
file = here("scripts/output/gsea_1_1.svg"),
width = 6.27 * 72,
height = 3.135 * 72,
scale = 96 / 72
)

59
scripts/sliding_gsea.R Normal file
View file

@ -0,0 +1,59 @@
# This script performs a gene set enrichment analysis (GSEA) across the whole
# ranking of ubiquituos genes using g:Profiler.
# Size of each gene bucket. The GSEA is done once for each bucket within the
# ranking.
bucket_size <- 500
library(data.table)
library(here)
i_am("scripts/gsea.R")
file_path <- here("scripts", "output", "ubigen_gsea.Rds")
image_path <- here("scripts", "output", "ubigen_gsea.svg")
# The result will be saved in `file_path` to avoid unnecessary API calls.
result <- if (file.exists(file_path)) {
readRDS(file_path)
} else {
data <- copy(ubigen::genes)
data[, bucket := ceiling(rank / bucket_size)]
result <- data[, .(analysis = list(gprofiler2::gost(gene))), by = bucket]
saveRDS(result, file = file_path)
result
}
result[, result := lapply(analysis, function(a) a$result)]
result <- result[, rbindlist(result), by = bucket]
data <- result[, .(count = .N), by = c("bucket", "source")]
data[, total := sum(count), by = bucket]
smooth_model <- loess(total ~ bucket, data, span = 0.3)
bucket_smoothed <- seq(1, nrow(data), 0.1)
total_smoothed <- predict(smooth_model, bucket_smoothed)
fig <- plotly::plot_ly(data) |>
plotly::add_bars(
x = ~bucket,
y = ~count,
color = ~source
) |>
plotly::add_lines(
x = bucket_smoothed,
y = total_smoothed,
name = "All (smoothed)"
) |>
plotly::layout(
xaxis = list(title = glue::glue("Bucket of genes (n = {bucket_size})")),
yaxis = list(title = "Number of associated terms"),
barmode = "stack",
legend = list(title = list(text = "<b>Source of term</b>"))
)
plotly::save_image(fig, image_path, width = 1200, height = 800)
gsea_plot_ranking <- fig
usethis::use_data(gsea_plot_ranking, internal = TRUE, overwrite = TRUE)