mirror of
				https://github.com/johrpan/ubigen.git
				synced 2025-10-26 19:57:24 +01:00 
			
		
		
		
	Add drug plots
This commit is contained in:
		
							parent
							
								
									cf8e9e79d5
								
							
						
					
					
						commit
						785b748ba4
					
				
					 8 changed files with 365 additions and 185 deletions
				
			
		|  | @ -237,5 +237,6 @@ server <- function(custom_dataset = NULL) { | |||
|     }) | ||||
| 
 | ||||
|     output$gsea_plot_ranking <- plotly::renderPlotly(gsea_plot_ranking) | ||||
|     output$fig_drug_scores <- plotly::renderPlotly(fig_drug_scores) | ||||
|   } | ||||
| } | ||||
|  |  | |||
							
								
								
									
										
											BIN
										
									
								
								R/sysdata.rda
									
										
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								R/sysdata.rda
									
										
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										16
									
								
								R/ui.R
									
										
									
									
									
								
							
							
						
						
									
										16
									
								
								R/ui.R
									
										
									
									
									
								
							|  | @ -272,7 +272,21 @@ ui <- function(custom_dataset = NULL) { | |||
|             "Note: Click on the legend items to toggle single sources. A ", | ||||
|             "double-click will isolate a single source of interest." | ||||
|           ))), | ||||
|           plotly::plotlyOutput("gsea_plot_ranking", height = "600px") | ||||
|           plotly::plotlyOutput("gsea_plot_ranking", height = "600px"), | ||||
|           h2("Drug effects"), | ||||
|           p(HTML(paste0( | ||||
|             "Scores for drugs based on the genes that are significantly ", | ||||
|             "influenced by them. To compute a score for each drug, the scores ", | ||||
|             "of all influenced genes based on “GTEx (all)” (X-axis) and ", | ||||
|             "“CMap” (Y-axis) are averaged with weights based on the fold ", | ||||
|             "change of the interactions. The position of each drug in this ", | ||||
|             "plot is therefore a result of how ubiquitous the genes that it ", | ||||
|             "influences are." | ||||
|           ))), | ||||
|           p(HTML(paste0( | ||||
|             "Note: Hover over the markers to see drug names." | ||||
|           ))), | ||||
|           plotly::plotlyOutput("fig_drug_scores", height = "1200px") | ||||
|         ) | ||||
|       ), | ||||
|       tabPanel( | ||||
|  |  | |||
|  | @ -1,136 +0,0 @@ | |||
| library(data.table) | ||||
| library(here) | ||||
| 
 | ||||
| i_am("scripts/cmap_drugs_analysis.R") | ||||
| 
 | ||||
| data <- fread(here("scripts/output/cmap_drugs.csv")) | ||||
| 
 | ||||
| data[, c("drug", "concentration", "cell_line") := | ||||
|   tstrsplit(drug, "_", fixed = TRUE)] | ||||
| 
 | ||||
| data[, concentration := as.double(concentration)] | ||||
| 
 | ||||
| data <- data[, | ||||
|   .(abs_mean_change = mean(abs(mean_change))), | ||||
|   by = .(drug, group) | ||||
| ] | ||||
| 
 | ||||
| # Source: PubChem ID list upload based on identifiers converted from CMap | ||||
| # drug names using the PubChem ID exchange. | ||||
| pubchem_data <- fread(here("scripts/input/pubchem_data.csv")) | ||||
| 
 | ||||
| pubchem_data <- pubchem_data[, .(cid, cmpdname, annotation)] | ||||
| pubchem_data <- unique(pubchem_data, by = "cid") | ||||
| pubchem_data <- pubchem_data[, | ||||
|   .( | ||||
|     cmpdname, | ||||
|     annotation = strsplit(annotation, "|", fixed = TRUE) |> unlist() | ||||
|   ), | ||||
|   by = cid | ||||
| ] | ||||
| 
 | ||||
| # Filter for WHO ATC annotations | ||||
| pubchem_data <- pubchem_data[stringr::str_detect(annotation, "^[A-Z] - ")] | ||||
| 
 | ||||
| # Extract ATC levels | ||||
| 
 | ||||
| pubchem_data[, atc_1 := stringr::str_match( | ||||
|   annotation, | ||||
|   "^[A-Z] - ([^>]*)" | ||||
| )[, 2] |> stringr::str_trim()] | ||||
| 
 | ||||
| pubchem_data[, atc_2 := stringr::str_match( | ||||
|   annotation, | ||||
|   "> [A-Z][0-9][0-9] - ([^>]*)" | ||||
| )[, 2] |> stringr::str_trim()] | ||||
| 
 | ||||
| pubchem_data[, atc_3 := stringr::str_match( | ||||
|   annotation, | ||||
|   "> [A-Z][0-9][0-9][A-Z] - ([^>]*)" | ||||
| )[, 2] |> stringr::str_trim()] | ||||
| 
 | ||||
| # Source: PubChem ID exchange | ||||
| drugs_pubchem_mapping <- fread(here("scripts/input/drugs_pubchem.tsv")) |> | ||||
|   na.omit() | ||||
| 
 | ||||
| data <- merge(data, drugs_pubchem_mapping, by = "drug", allow.cartesian = TRUE) | ||||
| data <- merge(data, pubchem_data, by = "cid", allow.cartesian = TRUE) | ||||
| data[, drug_category := atc_1] | ||||
| 
 | ||||
| 
 | ||||
| # Select top drug categories | ||||
| 
 | ||||
| results_drug_categories <- data[, | ||||
|   .(score = mean(abs_mean_change)), | ||||
|   by = .(group, drug_category) | ||||
| ] | ||||
| 
 | ||||
| results_drug_categories <- results_drug_categories[, | ||||
|   .(mean_score = mean(score)), | ||||
|   by = drug_category | ||||
| ] | ||||
| 
 | ||||
| setorder(results_drug_categories, -mean_score) | ||||
| top_drug_categories <- results_drug_categories[1:7, drug_category] | ||||
| drug_categories <- c(top_drug_categories, "Other") | ||||
| 
 | ||||
| # Merge other drug categories | ||||
| 
 | ||||
| data[!(drug_category %chin% top_drug_categories), drug_category := "Other"] | ||||
| 
 | ||||
| # Recompute results with new categories | ||||
| 
 | ||||
| results <- data[, | ||||
|   .(score = mean(abs_mean_change)), | ||||
|   by = .(group, drug_category) | ||||
| ] | ||||
| 
 | ||||
| group_plots <- list() | ||||
| 
 | ||||
| for (group_value in results[, unique(group)]) { | ||||
|   group_plot <- plotly::plot_ly() |> | ||||
|     plotly::add_bars( | ||||
|       data = results[group == group_value], | ||||
|       x = ~drug_category, | ||||
|       y = ~score, | ||||
|       color = ~drug_category | ||||
|     ) |> | ||||
|     plotly::layout( | ||||
|       xaxis = list( | ||||
|         categoryarray = drug_categories, | ||||
|         title = "", | ||||
|         showticklabels = FALSE | ||||
|       ), | ||||
|       yaxis = list( | ||||
|         range = c(0.0, 0.03), | ||||
|         nticks = 4, | ||||
|         title = "" | ||||
|       ), | ||||
|       font = list(size = 8), | ||||
|       margin = list( | ||||
|         pad = 2, | ||||
|         l = 48, | ||||
|         r = 0, | ||||
|         t = 0, | ||||
|         b = 36 | ||||
|       ) | ||||
|     ) | ||||
| 
 | ||||
|   plotly::save_image( | ||||
|     group_plot |> plotly::hide_legend(), | ||||
|     file = here(glue::glue("scripts/output/drug_categories_{group_value}.svg")), | ||||
|     width = 3 * 72, | ||||
|     height = 4 * 72, | ||||
|     scale = 96 / 72 | ||||
|   ) | ||||
| 
 | ||||
|   group_plots <- c(group_plots, list(group_plot)) | ||||
| } | ||||
| 
 | ||||
| plotly::save_image( | ||||
|   group_plot, | ||||
|   file = here(glue::glue("scripts/output/drug_categories_legend.svg")), | ||||
|   width = 6.27 * 72, | ||||
|   height = 6.27 * 72, | ||||
|   scale = 96 / 72 | ||||
| ) | ||||
|  | @ -1,47 +0,0 @@ | |||
| library(data.table) | ||||
| library(gprofiler2) | ||||
| library(here) | ||||
| 
 | ||||
| i_am("scripts/cmap_drugs_input.R") | ||||
| 
 | ||||
| # Source: custom | ||||
| load(here("scripts", "input", "CMap_20180808.RData")) | ||||
| 
 | ||||
| data <- CMap$"HT_HG-U133A" | ||||
| rm(CMap) | ||||
| 
 | ||||
| transcripts <- dimnames(data)$transcripts | ||||
| genes <- gconvert( | ||||
|   transcripts, | ||||
|   numeric_ns = "ENTREZGENE_ACC", | ||||
|   mthreshold = 1, | ||||
|   filter_na = FALSE | ||||
| )$target | ||||
| dimnames(data)[[1]] <- genes | ||||
| 
 | ||||
| data_drugs <- as.data.table(data) | ||||
| data_drugs <- na.omit(data_drugs) | ||||
| data_drugs <- data_drugs[data == "logFoldChange", .(transcripts, drugs, value)] | ||||
| 
 | ||||
| setnames( | ||||
|   data_drugs, | ||||
|   c("transcripts", "drugs", "value"), | ||||
|   c("gene", "drug", "change") | ||||
| ) | ||||
| 
 | ||||
| genes_0_0 <- scan(here("scripts/output/genes_0_0.txt"), what = character()) | ||||
| genes_0_1 <- scan(here("scripts/output/genes_0_1.txt"), what = character()) | ||||
| genes_1_0 <- scan(here("scripts/output/genes_1_0.txt"), what = character()) | ||||
| genes_1_1 <- scan(here("scripts/output/genes_1_1.txt"), what = character()) | ||||
| 
 | ||||
| data_drugs[gene %chin% genes_0_0, group := "genes_0_0"] | ||||
| data_drugs[gene %chin% genes_0_1, group := "genes_0_1"] | ||||
| data_drugs[gene %chin% genes_1_0, group := "genes_1_0"] | ||||
| data_drugs[gene %chin% genes_1_1, group := "genes_1_1"] | ||||
| 
 | ||||
| data_drugs <- na.omit(data_drugs) | ||||
| 
 | ||||
| results <- data_drugs[, .(mean_change = mean(change)), by = .(drug, group)] | ||||
| fwrite(results, file = here("scripts/output/cmap_drugs.csv")) | ||||
| 
 | ||||
| write(data_drugs[, unique(drug)], file = here("scripts/output/drugs.txt")) | ||||
							
								
								
									
										237
									
								
								scripts/drugs_analysis.R
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										237
									
								
								scripts/drugs_analysis.R
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,237 @@ | |||
| library(data.table) | ||||
| library(here) | ||||
| 
 | ||||
| i_am("scripts/drugs_analysis.R") | ||||
| 
 | ||||
| drugs_cmap <- fread(here("scripts/output/drugs_cmap.csv")) | ||||
| 
 | ||||
| # Only keep significant changes | ||||
| drugs_cmap <- drugs_cmap[p_value <= 0.05] | ||||
| 
 | ||||
| # Keep one row per gene and drug, with the most significant change. | ||||
| setkey(drugs_cmap, gene, drug, p_value) | ||||
| drugs_cmap <- drugs_cmap[ | ||||
|   rowid(gene, drug) == 1, | ||||
|   .(gene, drug, log_fold_change, p_value) | ||||
| ] | ||||
| 
 | ||||
| drugs_cmap[, negative_log_10_p := -log10(p_value)] | ||||
| 
 | ||||
| ranking_data <- fread(here("scripts/output/gsea_vs_cmap_groups.csv")) | ||||
| n_ubiquitous <- ranking_data[percentile_gtex >= 0.95, .N] | ||||
| n_non_ubiquitous <- ranking_data[percentile_gtex < 0.95, .N] | ||||
| data <- merge(drugs_cmap, ranking_data, by = "gene") | ||||
| 
 | ||||
| drugs <- fread(here("scripts/output/drugs.csv"), na.strings = "") | ||||
| data <- merge(data, drugs, by = "drug", all.x = TRUE, allow.cartesian = TRUE) | ||||
| 
 | ||||
| # Use CMap names as fallback (for drugs not present in drugs.csv above) | ||||
| data[is.na(name), name := stringr::str_to_sentence(drug)] | ||||
| 
 | ||||
| # Figures for single drugs | ||||
| 
 | ||||
| results_drugs <- unique(data, by = c("drug", "gene")) | ||||
| results_drugs[, | ||||
|   `:=`( | ||||
|     proportion_ubiquitous = | ||||
|       .SD[percentile_gtex >= 0.95, .N / n_ubiquitous], | ||||
|     proportion_non_ubiquitous = | ||||
|       .SD[percentile_gtex < 0.95, .N / n_non_ubiquitous], | ||||
|     drug_score_gtex = weighted.mean(score_gtex, abs(log_fold_change)), | ||||
|     drug_score_cmap = weighted.mean(score_cmap, abs(log_fold_change)) | ||||
|   ), | ||||
|   by = drug | ||||
| ] | ||||
| 
 | ||||
| results_drugs[, bias := proportion_ubiquitous / proportion_non_ubiquitous] | ||||
| setorder(results_drugs, -bias) | ||||
| 
 | ||||
| results_drugs_unique <- unique(results_drugs, by = "drug") | ||||
| 
 | ||||
| # Exclude some exotic drugs | ||||
| results_drugs_unique <- results_drugs_unique[!is.na(indication)] | ||||
| 
 | ||||
| n_drugs <- nrow(results_drugs_unique) | ||||
| selected_drugs <- c( | ||||
|   results_drugs_unique[1:10, drug], | ||||
|   results_drugs_unique[(n_drugs - 9):n_drugs, drug] | ||||
| ) | ||||
| 
 | ||||
| fig_drug_scores_new <- plotly::plot_ly(results_drugs_unique) |> | ||||
|   plotly::add_markers( | ||||
|     x = ~drug_score_gtex, | ||||
|     y = ~drug_score_cmap, | ||||
|     text = ~name, | ||||
|     marker = list(size = 4) | ||||
|   ) |> | ||||
|   plotly::layout( | ||||
|     xaxis = list( | ||||
|       title = "Score based on GTEx (all)" | ||||
|     ), | ||||
|     yaxis = list( | ||||
|       title = "Score based on CMap" | ||||
|     ) | ||||
|   ) | ||||
| 
 | ||||
| # To not overwrite other data: | ||||
| load(here("R/sysdata.rda")) | ||||
| fig_drug_scores <- fig_drug_scores_new | ||||
| 
 | ||||
| usethis::use_data( | ||||
|   fig_drug_scores, | ||||
|   gsea_plot_ranking, # From R/sysdata.rda | ||||
|   internal = TRUE, | ||||
|   overwrite = TRUE | ||||
| ) | ||||
| 
 | ||||
| results_drugs_unique <- results_drugs_unique[drug %chin% selected_drugs] | ||||
| 
 | ||||
| fig_drugs <- plotly::plot_ly(results_drugs_unique) |> | ||||
|   plotly::add_bars( | ||||
|     x = ~proportion_ubiquitous, | ||||
|     y = ~name | ||||
|   ) |> | ||||
|   plotly::add_bars( | ||||
|     x = ~ -proportion_non_ubiquitous, | ||||
|     y = ~name | ||||
|   ) |> | ||||
|   plotly::layout( | ||||
|     xaxis = list( | ||||
|       range = c(-0.8, 0.8), | ||||
|       title = "Proportion of genes that are influenced significantly", | ||||
|       tickformat = ".0%" | ||||
|     ), | ||||
|     yaxis = list( | ||||
|       categoryarray = rev(results_drugs_unique[, name]), | ||||
|       title = "" | ||||
|     ), | ||||
|     barmode = "relative", | ||||
|     showlegend = FALSE, | ||||
|     font = list(size = 8), | ||||
|     margin = list( | ||||
|       pad = 2, | ||||
|       l = 0, | ||||
|       r = 0, | ||||
|       t = 0, | ||||
|       b = 36 | ||||
|     ) | ||||
|   ) | ||||
| 
 | ||||
| # Figure for mechanisms of action | ||||
| 
 | ||||
| results_moa <- unique( | ||||
|   data[!is.na(mechanism_of_action) & mechanism_of_action != "Unknown"], | ||||
|   by = c("drug", "gene", "mechanism_of_action") | ||||
| ) | ||||
| 
 | ||||
| results_moa <- results_moa[, | ||||
|   .( | ||||
|     percentile_gtex = percentile_gtex[1], | ||||
|     log_fold_change = mean(log_fold_change), | ||||
|     score_gtex = mean(score_gtex) | ||||
|   ), | ||||
|   by = c("mechanism_of_action", "gene") | ||||
| ] | ||||
| 
 | ||||
| results_moa[, | ||||
|   `:=`( | ||||
|     proportion_ubiquitous = .SD[percentile_gtex >= 0.95, .N / n_ubiquitous], | ||||
|     proportion_non_ubiquitous = | ||||
|       .SD[percentile_gtex < 0.95, .N / n_non_ubiquitous], | ||||
|     moa_score = weighted.mean(score_gtex, abs(log_fold_change)) | ||||
|   ), | ||||
|   by = mechanism_of_action | ||||
| ] | ||||
| 
 | ||||
| results_moa[, bias := proportion_ubiquitous / proportion_non_ubiquitous] | ||||
| setorder(results_moa, -bias) | ||||
| 
 | ||||
| results_moa_unique <- unique(results_moa, by = "mechanism_of_action") | ||||
| n_moa <- nrow(results_moa_unique) | ||||
| selected_moas <- c( | ||||
|   results_moa_unique[1:10, mechanism_of_action], | ||||
|   results_moa_unique[(n_moa - 9):n_moa, mechanism_of_action] | ||||
| ) | ||||
| 
 | ||||
| results_moa_unique <- | ||||
|   results_moa_unique[mechanism_of_action %chin% selected_moas] | ||||
| 
 | ||||
| fig_moas <- plotly::plot_ly(results_moa_unique) |> | ||||
|   plotly::add_bars( | ||||
|     x = ~proportion_ubiquitous, | ||||
|     y = ~mechanism_of_action | ||||
|   ) |> | ||||
|   plotly::add_bars( | ||||
|     x = ~ -proportion_non_ubiquitous, | ||||
|     y = ~mechanism_of_action | ||||
|   ) |> | ||||
|   plotly::layout( | ||||
|     xaxis = list( | ||||
|       range = c(-0.8, 0.8), | ||||
|       title = "Proportion of genes that are influenced significantly", | ||||
|       tickformat = ".0%" | ||||
|     ), | ||||
|     yaxis = list( | ||||
|       categoryarray = rev(results_moa_unique[, mechanism_of_action]), | ||||
|       title = "" | ||||
|     ), | ||||
|     barmode = "relative", | ||||
|     showlegend = FALSE, | ||||
|     font = list(size = 8), | ||||
|     margin = list( | ||||
|       pad = 2, | ||||
|       l = 0, | ||||
|       r = 0, | ||||
|       t = 0, | ||||
|       b = 36 | ||||
|     ) | ||||
|   ) | ||||
| 
 | ||||
| plotly::save_image( | ||||
|   fig_drug_scores |> plotly::layout( | ||||
|     font = list(size = 8), | ||||
|     margin = list( | ||||
|       pad = 2, | ||||
|       l = 36, | ||||
|       r = 0, | ||||
|       t = 0, | ||||
|       b = 36 | ||||
|     ) | ||||
|   ), | ||||
|   file = here("scripts/output/drug_scores.svg"), | ||||
|   width = 6.27 * 72, | ||||
|   height = 6.27 * 72, | ||||
|   scale = 96 / 72 | ||||
| ) | ||||
| 
 | ||||
| plotly::save_image( | ||||
|   fig_drugs, | ||||
|   file = here("scripts/output/drugs_labels.svg"), | ||||
|   width = 3.135 * 72, | ||||
|   height = 6.27 * 72, | ||||
|   scale = 96 / 72 | ||||
| ) | ||||
| 
 | ||||
| plotly::save_image( | ||||
|   fig_drugs |> plotly::layout(yaxis = list(showticklabels = FALSE)), | ||||
|   file = here("scripts/output/drugs.svg"), | ||||
|   width = 3.135 * 72, | ||||
|   height = 6.27 * 72, | ||||
|   scale = 96 / 72 | ||||
| ) | ||||
| 
 | ||||
| plotly::save_image( | ||||
|   fig_moas, | ||||
|   file = here("scripts/output/moas_labels.svg"), | ||||
|   width = 3.135 * 72, | ||||
|   height = 6.27 * 72, | ||||
|   scale = 96 / 72 | ||||
| ) | ||||
| 
 | ||||
| plotly::save_image( | ||||
|   fig_moas |> plotly::layout(yaxis = list(showticklabels = FALSE)), | ||||
|   file = here("scripts/output/moas.svg"), | ||||
|   width = 3.135 * 72, | ||||
|   height = 6.27 * 72, | ||||
|   scale = 96 / 72 | ||||
| ) | ||||
							
								
								
									
										103
									
								
								scripts/drugs_input.R
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										103
									
								
								scripts/drugs_input.R
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,103 @@ | |||
| library(data.table) | ||||
| library(here) | ||||
| 
 | ||||
| i_am("scripts/drugs_input.R") | ||||
| 
 | ||||
| # Source: PubChem ID exchange based on CMap drug identifiers. | ||||
| drugs_cmap_pubchem <- fread(here("scripts/input/drugs_cmap_pubchem.tsv")) | ||||
| drugs_cmap_pubchem <- na.omit(drugs_cmap_pubchem) | ||||
| 
 | ||||
| # Source: UniChem ID mapping | ||||
| drugs_chembl_pubchem <- fread(here("scripts/input/drugs_chembl_pubchem.tsv")) | ||||
| 
 | ||||
| # Source: ChEMBL SQLite database | ||||
| # SELECT DISTINCT | ||||
| #   chembl_id, | ||||
| #   synonyms AS name, | ||||
| #   mesh_heading AS indication, | ||||
| #   mechanism_of_action | ||||
| # FROM molecule_dictionary | ||||
| #   LEFT JOIN drug_indication | ||||
| #     ON molecule_dictionary.molregno = drug_indication.molregno | ||||
| #   LEFT JOIN drug_mechanism | ||||
| #     ON molecule_dictionary.molregno = drug_mechanism.molregno | ||||
| #   LEFT JOIN ( | ||||
| #       SELECT molregno, synonyms FROM molecule_synonyms WHERE syn_type == 'INN' | ||||
| #     ) AS molecule_synonyms | ||||
| #     ON molecule_dictionary.molregno = molecule_synonyms.molregno | ||||
| #   WHERE name IS NOT NULL | ||||
| #     OR indication IS NOT NULL | ||||
| #     OR mechanism_of_action IS NOT NULL; | ||||
| drugs_chembl <- fread(here("scripts/input/drugs_chembl.csv")) | ||||
| 
 | ||||
| # Source: PubChem ID list upload based on identifiers converted from CMap | ||||
| # drug names using the PubChem ID exchange. | ||||
| drugs_pubchem <- fread(here("scripts/input/drugs_pubchem.csv")) | ||||
| 
 | ||||
| drugs_pubchem <- drugs_pubchem[, .(cid, cmpdname, annotation)] | ||||
| drugs_pubchem <- unique(drugs_pubchem, by = "cid") | ||||
| drugs_pubchem <- drugs_pubchem[, | ||||
|   .( | ||||
|     cmpdname, | ||||
|     annotation = strsplit(annotation, "|", fixed = TRUE) |> unlist() | ||||
|   ), | ||||
|   by = cid | ||||
| ] | ||||
| 
 | ||||
| # Filter for WHO ATC annotations | ||||
| drugs_pubchem <- drugs_pubchem[stringr::str_detect(annotation, "^[A-Z] - ")] | ||||
| 
 | ||||
| # Extract ATC levels | ||||
| 
 | ||||
| drugs_pubchem[, atc_1 := stringr::str_match( | ||||
|   annotation, | ||||
|   "^[A-Z] - ([^>]*)" | ||||
| )[, 2] |> stringr::str_trim()] | ||||
| 
 | ||||
| drugs_pubchem[, atc_2 := stringr::str_match( | ||||
|   annotation, | ||||
|   "> [A-Z][0-9][0-9] - ([^>]*)" | ||||
| )[, 2] |> stringr::str_trim()] | ||||
| 
 | ||||
| drugs_pubchem[, atc_3 := stringr::str_match( | ||||
|   annotation, | ||||
|   "> [A-Z][0-9][0-9][A-Z] - ([^>]*)" | ||||
| )[, 2] |> stringr::str_trim()] | ||||
| 
 | ||||
| drugs_pubchem <- drugs_pubchem[, .(cid, cmpdname, atc_1, atc_2, atc_3)] | ||||
| setnames(drugs_pubchem, c("cid", "cmpdname"), c("pubchem_cid", "pubchem_name")) | ||||
| 
 | ||||
| drugs <- merge( | ||||
|   drugs_cmap_pubchem, | ||||
|   drugs_chembl_pubchem, | ||||
|   by = "pubchem_cid", | ||||
|   all.x = TRUE | ||||
| ) | ||||
| 
 | ||||
| drugs <- merge( | ||||
|   drugs, | ||||
|   drugs_chembl, | ||||
|   by = "chembl_id", | ||||
|   all.x = TRUE | ||||
| ) | ||||
| 
 | ||||
| drugs <- merge( | ||||
|   drugs, | ||||
|   drugs_pubchem, | ||||
|   by = "pubchem_cid", | ||||
|   all.x = TRUE, | ||||
|   allow.cartesian = TRUE | ||||
| ) | ||||
| 
 | ||||
| # Prefer INN name, then PubChem, then CMap: | ||||
| drugs[name == "", name := NA] | ||||
| drugs[is.na(name), name := pubchem_name] | ||||
| drugs[name == "", name := NA] | ||||
| drugs[is.na(name), name := stringr::str_to_sentence(drug)] | ||||
| drugs[, pubchem_name := NULL] | ||||
| 
 | ||||
| # Clean up empty values: | ||||
| drugs[indication == "", indication := NA] | ||||
| drugs[mechanism_of_action == "", mechanism_of_action := NA] | ||||
| 
 | ||||
| fwrite(drugs, file = here("scripts/output/drugs.csv")) | ||||
|  | @ -55,5 +55,13 @@ fig <- plotly::plot_ly(data) |> | |||
| 
 | ||||
| plotly::save_image(fig, image_path, width = 1200, height = 800) | ||||
| 
 | ||||
| # To not overwrite other data: | ||||
| load(here("R/sysdata.rda")) | ||||
| gsea_plot_ranking <- fig | ||||
| usethis::use_data(gsea_plot_ranking, internal = TRUE, overwrite = TRUE) | ||||
| 
 | ||||
| usethis::use_data( | ||||
|   gsea_plot_ranking, | ||||
|   fig_drug_scores, # From R/sysdata.rda | ||||
|   internal = TRUE, | ||||
|   overwrite = TRUE | ||||
| ) | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue