mirror of
https://github.com/johrpan/ubigen.git
synced 2025-10-26 19:57:24 +01:00
Move analysis into the package
This commit is contained in:
parent
d25bb424b1
commit
698ea5086a
5 changed files with 105 additions and 69 deletions
81
R/analyze.R
Normal file
81
R/analyze.R
Normal file
|
|
@ -0,0 +1,81 @@
|
|||
#' Analyze the provided expression data for ubiquitously expressed genes.
|
||||
#'
|
||||
#' @param data A `data.table` in normalized, long format. There should be a
|
||||
#' `gene` column containing Ensembl gene IDs, a `sample` column containing
|
||||
#' abitrary sample identifiers that are unique per sample and an `expression`
|
||||
#' column containing the actual expression value for each given combination
|
||||
#' of gene and sample.
|
||||
#'
|
||||
#' @return A `data.table` containing all computed values per gene.
|
||||
#'
|
||||
#' @export
|
||||
analyze <- function(data) {
|
||||
data[, `:=`(
|
||||
expression_median = median(expression),
|
||||
expression_95 = quantile(expression, probs = 0.95)
|
||||
), by = sample]
|
||||
|
||||
# Transform the expression logarithmically. The samples that don't express a
|
||||
# gene at all will be left out intentionally.
|
||||
data[expression > 0, expression_log := log2(expression)]
|
||||
|
||||
results <- data[, .(
|
||||
median_expression = median(expression[expression > 0]),
|
||||
iqr_expression = IQR(expression[expression > 0]),
|
||||
mean_expression = mean(expression[expression > 0]),
|
||||
sd_expression = sd(expression[expression > 0]),
|
||||
median_expression_normalized = median(expression_log, na.rm = TRUE),
|
||||
iqr_expression_normalized = IQR(expression_log, na.rm = TRUE),
|
||||
mean_expression_normalized = mean(expression_log, na.rm = TRUE),
|
||||
sd_expression_normalized = sd(expression_log, na.rm = TRUE),
|
||||
above_zero = mean(expression > 0.0),
|
||||
above_threshold = mean(expression > 50.0),
|
||||
above_median = mean(expression > expression_median),
|
||||
above_95 = mean(expression > expression_95)
|
||||
), by = "gene"]
|
||||
|
||||
results[, `:=`(
|
||||
qcv_expression = iqr_expression / median_expression,
|
||||
qcv_expression_normalized =
|
||||
iqr_expression_normalized / median_expression_normalized,
|
||||
cv_expression = sd_expression / mean_expression,
|
||||
cv_expression_normalized =
|
||||
sd_expression_normalized / mean_expression_normalized
|
||||
)]
|
||||
|
||||
# Normalize values to the range of 0.0 to 1.0.
|
||||
results[, `:=`(
|
||||
median_expression_normalized =
|
||||
(median_expression_normalized -
|
||||
min(median_expression_normalized, na.rm = TRUE)) /
|
||||
(max(median_expression_normalized, na.rm = TRUE) -
|
||||
min(median_expression_normalized, na.rm = TRUE)),
|
||||
iqr_expression_normalized =
|
||||
(iqr_expression_normalized -
|
||||
min(iqr_expression_normalized, na.rm = TRUE)) /
|
||||
(max(iqr_expression_normalized, na.rm = TRUE) -
|
||||
min(iqr_expression_normalized, na.rm = TRUE)),
|
||||
qcv_expression_normalized =
|
||||
(qcv_expression_normalized -
|
||||
min(qcv_expression_normalized, na.rm = TRUE)) /
|
||||
(max(qcv_expression_normalized, na.rm = TRUE) -
|
||||
min(qcv_expression_normalized, na.rm = TRUE)),
|
||||
mean_expression_normalized =
|
||||
(mean_expression_normalized -
|
||||
min(mean_expression_normalized, na.rm = TRUE)) /
|
||||
(max(mean_expression_normalized, na.rm = TRUE) -
|
||||
min(mean_expression_normalized, na.rm = TRUE)),
|
||||
sd_expression_normalized =
|
||||
(sd_expression_normalized -
|
||||
min(sd_expression_normalized, na.rm = TRUE)) /
|
||||
(max(sd_expression_normalized, na.rm = TRUE) -
|
||||
min(sd_expression_normalized, na.rm = TRUE)),
|
||||
cv_expression_normalized =
|
||||
(cv_expression_normalized -
|
||||
min(cv_expression_normalized, na.rm = TRUE)) /
|
||||
(max(cv_expression_normalized, na.rm = TRUE) -
|
||||
min(cv_expression_normalized, na.rm = TRUE))
|
||||
)]
|
||||
|
||||
results
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue