geposanui/server.R

86 lines
No EOL
2.4 KiB
R

library(data.table)
library(DT)
library(shiny)
source("init.R")
source("scatter_plot.R")
server <- function(input, output) {
#' This reactive expression applies all user defined filters as well as the
#' desired ranking weights to the results.
results <- reactive({
# Select the species preset.
results <- if (input$species == "all") {
results_all
} else {
results_replicative
}
# Compute scoring factors and the weighted score.
clusteriness_weight <- input$clusteriness / 100
correlation_weight <- input$correlation / 100
total_weight <- clusteriness_weight + correlation_weight
clusteriness_factor <- clusteriness_weight / total_weight
correlation_factor <- correlation_weight / total_weight
results[, score := clusteriness_factor * clusteriness +
correlation_factor * r_mean]
# Apply the cut-off score.
results <- results[score >= input$cutoff / 100]
# Order the results based on their score. The resulting index will be
# used as the "rank".
setorder(results, -score, na.last = TRUE)
})
output$genes <- renderDT({
dt <- datatable(
results()[, .(.I, name, clusteriness, r_mean, score)],
rownames = FALSE,
colnames = c(
"Rank",
"Gene",
"Clusteriness",
"Correlation",
"Score"
),
style = "bootstrap"
)
formatPercentage(dt, c("clusteriness", "r_mean", "score"), digits = 1)
})
output$synposis <- renderText({
results <- results()
sprintf(
"Found %i candidates including %i/%i verified and %i/%i suggested \
TPE-OLD genes.",
results[, .N],
results[verified == TRUE, .N],
genes[verified == TRUE, .N],
results[suggested == TRUE, .N],
genes[suggested == TRUE, .N]
)
})
output$scatter <- renderPlot({
results <- results()
gene_ids <- results[input$genes_rows_selected, gene]
genes <- genes[id %chin% gene_ids]
species <- if (input$species == "all") {
species
} else {
species[replicative == TRUE]
}
scatter_plot(results, species, genes, distances)
})
}