library(data.table) library(DT) library(shiny) source("init.R") source("scatter_plot.R") server <- function(input, output) { #' This reactive expression applies all user defined filters as well as the #' desired ranking weights to the results. results <- reactive({ # Select the species preset. results <- if (input$species == "all") { results_all } else { results_replicative } # Compute scoring factors and the weighted score. clusteriness_weight <- input$clusteriness / 100 correlation_weight <- input$correlation / 100 total_weight <- clusteriness_weight + correlation_weight clusteriness_factor <- clusteriness_weight / total_weight correlation_factor <- correlation_weight / total_weight results[, score := clusteriness_factor * clusteriness + correlation_factor * r_mean] # Apply the cut-off score. results <- results[score >= input$cutoff / 100] # Order the results based on their score. The resulting index will be # used as the "rank". setorder(results, -score, na.last = TRUE) }) output$genes <- renderDT({ dt <- datatable( results()[, .(.I, name, clusteriness, r_mean, score)], rownames = FALSE, colnames = c( "Rank", "Gene", "Clusteriness", "Correlation", "Score" ), style = "bootstrap" ) formatPercentage(dt, c("clusteriness", "r_mean", "score"), digits = 1) }) output$synposis <- renderText({ results <- results() sprintf( "Found %i candidates including %i/%i verified and %i/%i suggested \ TPE-OLD genes.", results[, .N], results[verified == TRUE, .N], genes[verified == TRUE, .N], results[suggested == TRUE, .N], genes[suggested == TRUE, .N] ) }) output$scatter <- renderPlot({ results <- results() gene_ids <- results[input$genes_rows_selected, gene] genes <- genes[id %chin% gene_ids] species <- if (input$species == "all") { species } else { species[replicative == TRUE] } scatter_plot(results, species, genes, distances) }) }