mirror of
https://github.com/johrpan/geposanui.git
synced 2025-10-26 11:17:24 +01:00
Update correlation method
This adds some performance optimizations and removes the penalty for missing values.
This commit is contained in:
parent
cd63486f0a
commit
d87474e574
1 changed files with 29 additions and 27 deletions
|
|
@ -1,6 +1,4 @@
|
|||
library(data.table)
|
||||
library(progress)
|
||||
library(rlog)
|
||||
|
||||
#' Compute the mean correlation coefficient comparing gene distances with a set
|
||||
#' of reference genes.
|
||||
|
|
@ -8,7 +6,7 @@ library(rlog)
|
|||
#' The result will be a data.table with the following columns:
|
||||
#'
|
||||
#' - `gene` Gene ID of the processed gene.
|
||||
#' - `r_mean` Mean correlation coefficient.
|
||||
#' - `correlation` Mean correlation coefficient.
|
||||
#'
|
||||
#' @param distances Distance data to use.
|
||||
#' @param species_ids Species, whose data should be included.
|
||||
|
|
@ -17,55 +15,59 @@ library(rlog)
|
|||
process_correlation <- function(distances, species_ids, gene_ids,
|
||||
reference_gene_ids) {
|
||||
results <- data.table(gene = gene_ids)
|
||||
gene_count <- length(gene_ids)
|
||||
reference_count <- length(reference_gene_ids)
|
||||
|
||||
log_info(sprintf(
|
||||
"Correlating %i genes from %i species with %i reference genes",
|
||||
gene_count,
|
||||
length(species_ids),
|
||||
reference_count
|
||||
))
|
||||
|
||||
progress <- progress_bar$new(
|
||||
total = gene_count,
|
||||
format = "Correlating genes [:bar] :percent (ETA :eta)"
|
||||
)
|
||||
|
||||
# Prefilter distances by species.
|
||||
distances <- distances[species %chin% species_ids]
|
||||
|
||||
for (i in 1:gene_count) {
|
||||
progress$tick()
|
||||
# Add an index for quickly accessing data per gene.
|
||||
setkey(distances, gene)
|
||||
|
||||
gene_id <- gene_ids[i]
|
||||
gene_distances <- distances[gene == gene_id]
|
||||
# Prepare the reference genes' data.
|
||||
reference_distances <- distances[gene %chin% reference_gene_ids]
|
||||
|
||||
if (nrow(gene_distances) < 10) {
|
||||
next
|
||||
#' Perform the correlation for one gene.
|
||||
compute <- function(gene_id) {
|
||||
gene_distances <- distances[gene_id]
|
||||
gene_species_count <- nrow(gene_distances)
|
||||
|
||||
# Return a score of 0.0 if there is just one or no value at all.
|
||||
if (gene_species_count <= 1) {
|
||||
return(0.0)
|
||||
}
|
||||
|
||||
#' Buffer for the sum of correlation coefficients.
|
||||
r_sum <- 0
|
||||
correlation_sum <- 0
|
||||
|
||||
# Correlate with all reference genes but not with the gene itself.
|
||||
for (reference_gene_id in
|
||||
reference_gene_ids[reference_gene_ids != gene_id]) {
|
||||
data <- merge(
|
||||
gene_distances,
|
||||
distances[gene == reference_gene_id],
|
||||
reference_distances[reference_gene_id],
|
||||
by = "species"
|
||||
)
|
||||
|
||||
# Skip this reference gene, if there are not enough value pairs.
|
||||
# This will lessen the final score, because it effectively
|
||||
# represents a correlation coefficient of 0.0.
|
||||
if (nrow(data) <= 1) {
|
||||
next
|
||||
}
|
||||
|
||||
# Order data by the reference gene's distance to get a monotonic
|
||||
# relation.
|
||||
setorder(data, distance.y)
|
||||
|
||||
r_sum <- r_sum + abs(cor(data[, distance.x], data[, distance.y]))
|
||||
correlation_sum <- correlation_sum + abs(cor(
|
||||
data[, distance.x], data[, distance.y],
|
||||
method = "spearman"
|
||||
))
|
||||
}
|
||||
|
||||
results[gene == gene_id, r_mean := r_sum / reference_count]
|
||||
# Compute the score as the mean correlation coefficient.
|
||||
score <- correlation_sum / reference_count
|
||||
}
|
||||
|
||||
results
|
||||
results[, correlation := compute(gene), by = 1:nrow(results)]
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue