From d87474e574788754c02fd40500c0d557d7151239 Mon Sep 17 00:00:00 2001 From: Elias Projahn Date: Mon, 11 Oct 2021 10:10:28 +0200 Subject: [PATCH] Update correlation method This adds some performance optimizations and removes the penalty for missing values. --- correlation.R | 56 ++++++++++++++++++++++++++------------------------- 1 file changed, 29 insertions(+), 27 deletions(-) diff --git a/correlation.R b/correlation.R index 14a71f5..18ad4da 100644 --- a/correlation.R +++ b/correlation.R @@ -1,6 +1,4 @@ library(data.table) -library(progress) -library(rlog) #' Compute the mean correlation coefficient comparing gene distances with a set #' of reference genes. @@ -8,7 +6,7 @@ library(rlog) #' The result will be a data.table with the following columns: #' #' - `gene` Gene ID of the processed gene. -#' - `r_mean` Mean correlation coefficient. +#' - `correlation` Mean correlation coefficient. #' #' @param distances Distance data to use. #' @param species_ids Species, whose data should be included. @@ -17,55 +15,59 @@ library(rlog) process_correlation <- function(distances, species_ids, gene_ids, reference_gene_ids) { results <- data.table(gene = gene_ids) - gene_count <- length(gene_ids) reference_count <- length(reference_gene_ids) - log_info(sprintf( - "Correlating %i genes from %i species with %i reference genes", - gene_count, - length(species_ids), - reference_count - )) - - progress <- progress_bar$new( - total = gene_count, - format = "Correlating genes [:bar] :percent (ETA :eta)" - ) - # Prefilter distances by species. distances <- distances[species %chin% species_ids] - for (i in 1:gene_count) { - progress$tick() + # Add an index for quickly accessing data per gene. + setkey(distances, gene) - gene_id <- gene_ids[i] - gene_distances <- distances[gene == gene_id] + # Prepare the reference genes' data. + reference_distances <- distances[gene %chin% reference_gene_ids] - if (nrow(gene_distances) < 10) { - next + #' Perform the correlation for one gene. + compute <- function(gene_id) { + gene_distances <- distances[gene_id] + gene_species_count <- nrow(gene_distances) + + # Return a score of 0.0 if there is just one or no value at all. + if (gene_species_count <= 1) { + return(0.0) } #' Buffer for the sum of correlation coefficients. - r_sum <- 0 + correlation_sum <- 0 # Correlate with all reference genes but not with the gene itself. for (reference_gene_id in reference_gene_ids[reference_gene_ids != gene_id]) { data <- merge( gene_distances, - distances[gene == reference_gene_id], + reference_distances[reference_gene_id], by = "species" ) + # Skip this reference gene, if there are not enough value pairs. + # This will lessen the final score, because it effectively + # represents a correlation coefficient of 0.0. + if (nrow(data) <= 1) { + next + } + # Order data by the reference gene's distance to get a monotonic # relation. setorder(data, distance.y) - r_sum <- r_sum + abs(cor(data[, distance.x], data[, distance.y])) + correlation_sum <- correlation_sum + abs(cor( + data[, distance.x], data[, distance.y], + method = "spearman" + )) } - results[gene == gene_id, r_mean := r_sum / reference_count] + # Compute the score as the mean correlation coefficient. + score <- correlation_sum / reference_count } - results + results[, correlation := compute(gene), by = 1:nrow(results)] } \ No newline at end of file