geposanui/R/server.R

289 lines
7.4 KiB
R
Raw Normal View History

2021-10-20 15:34:52 +02:00
# Java script function to replace gene IDs with Ensembl gene links.
js_link <- DT::JS("function(row, data) {
2021-10-01 09:50:04 +02:00
let id = data[1];
var name = data[2];
if (!name) name = 'Unknown';
let url = `https://www.ensembl.org/Homo_sapiens/Gene/Summary?g=${id}`;
$('td:eq(1)', row).html(`<a href=\"${url}\" target=\"_blank\">${name}</a>`);
}")
#' Create a server function for the application.
#'
#' @param options Global application options.
#' @noRd
server <- function(options) {
2022-05-26 12:44:09 +02:00
function(input, output, session) {
2022-06-22 13:48:37 +02:00
preset <- input_page_server("input_page", options)
comparison_gene_ids <- comparison_editor_server(
"comparison_editor",
preset,
options
)
2022-05-26 12:44:09 +02:00
observe({
updateNavbarPage(
session,
"main_page",
selected = "Results"
)
}) |> bindEvent(preset(), ignoreInit = TRUE)
# Compute the results according to the preset.
analysis <- reactive({
withProgress(
message = "Analyzing genes",
value = 0.0,
{ # nolint
geposan::analyze(
preset(),
progress = function(progress) {
setProgress(progress)
},
include_results = FALSE
)
}
)
}) |> bindCache(preset())
# Rank the results.
ranking <- methods_server("methods", analysis, comparison_gene_ids)
genes_with_distances <- merge(
geposan::genes,
geposan::distances[species == "hsapiens"],
by.x = "id",
by.y = "gene"
)
# Add gene information to the results.
results <- reactive({
merge(
ranking(),
genes_with_distances,
by.x = "gene",
by.y = "id",
sort = FALSE
)
})
# Apply the filters.
results_filtered <- filters_server("filters", results)
# Server for the detailed results panel.
results_server("results", results_filtered)
output$rank_plot <- plotly::renderPlotly({
preset <- preset()
gene_sets <- list("Reference genes" = preset$reference_gene_ids)
comparison_gene_ids <- comparison_gene_ids()
if (length(comparison_gene_ids) >= 1) {
gene_sets <- c(
gene_sets,
list("Comparison genes" = comparison_gene_ids)
)
}
2022-07-22 09:26:43 +02:00
geposan::plot_scores(ranking(), gene_sets = gene_sets)
2022-05-26 12:44:09 +02:00
})
2022-05-26 12:44:09 +02:00
output$rankings_plot <- plotly::renderPlotly({
preset <- preset()
2022-05-26 12:44:09 +02:00
rankings <- list()
methods <- preset$methods
all <- ranking()
2021-11-15 14:22:33 +01:00
2022-05-26 12:44:09 +02:00
for (method in methods) {
weights <- list()
weights[[method$id]] <- 1.0
rankings[[method$name]] <- geposan::ranking(all, weights)
}
2021-11-15 09:35:47 +01:00
2022-05-26 12:44:09 +02:00
rankings[["Combined"]] <- all
2022-05-26 12:44:09 +02:00
gene_sets <- list("Reference genes" = preset$reference_gene_ids)
comparison_gene_ids <- comparison_gene_ids()
2022-05-26 12:44:09 +02:00
if (length(comparison_gene_ids) >= 1) {
gene_sets <- c(
gene_sets,
list("Comparison genes" = comparison_gene_ids)
)
}
geposan::plot_rankings(rankings, gene_sets)
})
output$comparison_text <- renderUI({
reference <- geposan::compare(
ranking(),
preset()$reference_gene_ids
)
comparison <- if (!is.null(comparison_gene_ids())) {
geposan::compare(ranking(), comparison_gene_ids())
}
num <- function(x, digits) {
format(
round(x, digits = digits),
nsmall = digits,
scientific = FALSE
)
}
comparison_text <- function(name, comparison) {
glue::glue(
"The {name} have a mean score of ",
"<b>{num(comparison$mean_score, 4)}</b> ",
"resulting in a mean rank of ",
"<b>{num(comparison$mean_rank, 1)}</b>. ",
"This corresponds to a percent rank of ",
"<b>{num(100 * comparison$mean_percentile, 2)}%</b>. ",
"A Wilcoxon rank sum test gives an estimated score difference ",
"between <b>{num(comparison$test_result$conf.int[1], 3)}</b> and ",
"<b>{num(comparison$test_result$conf.int[2], 3)}</b> with a 95% ",
"confidence. This corresponds to a p-value of ",
"<b>{num(comparison$test_result$p.value, 4)}</b>."
2022-05-26 12:44:09 +02:00
)
}
2022-05-26 12:44:09 +02:00
reference_div <- div(HTML(
comparison_text("reference genes", reference)
))
2022-05-26 12:44:09 +02:00
if (!is.null(comparison)) {
div(
reference_div,
div(HTML(comparison_text("comparison genes", comparison)))
)
} else {
reference_div
}
})
output$boxplot <- plotly::renderPlotly({
preset <- preset()
gene_sets <- list("Reference genes" = preset$reference_gene_ids)
comparison_gene_ids <- comparison_gene_ids()
if (length(comparison_gene_ids) >= 1) {
gene_sets <- c(
gene_sets,
list("Comparison genes" = comparison_gene_ids)
)
}
2021-12-06 14:24:31 +01:00
2022-05-26 12:44:09 +02:00
geposan::plot_boxplot(ranking(), gene_sets)
})
2022-08-04 11:54:52 +02:00
output$gene_locations_plot <- plotly::renderPlotly({
preset <- preset()
gene_sets <- list("Reference genes" = preset$reference_gene_ids)
comparison_gene_ids <- comparison_gene_ids()
if (length(comparison_gene_ids) >= 1) {
gene_sets <- c(
gene_sets,
list("Comparison genes" = comparison_gene_ids)
)
}
geposan::plot_positions(
preset$species_ids,
gene_sets,
reference_gene_ids = preset$reference_gene_ids
)
})
2022-05-26 12:44:09 +02:00
output$positions_plot <- plotly::renderPlotly({
preset <- preset()
gene_sets <- list("Reference genes" = preset$reference_gene_ids)
comparison_gene_ids <- comparison_gene_ids()
2022-05-22 15:17:02 +02:00
2022-05-26 12:44:09 +02:00
if (length(comparison_gene_ids) >= 1) {
gene_sets <- c(
gene_sets,
list("Comparison genes" = comparison_gene_ids)
)
}
chromosome <- if (input$positions_plot_chromosome_name == "all") {
NULL
} else {
input$positions_plot_chromosome_name
}
geposan::plot_scores_by_position(
ranking(),
chromosome_name = chromosome,
gene_sets = gene_sets
)
})
gost <- reactive({
withProgress(
message = "Querying g:Profiler",
value = 0.0,
{ # nolint
setProgress(0.2)
gprofiler2::gost(
results_filtered()[, gene],
custom_bg = preset()$gene_ids,
domain_scope = "custom_annotated"
)
2022-05-26 12:44:09 +02:00
}
)
}) |> bindCache(results_filtered(), preset())
2022-05-26 12:44:09 +02:00
output$gost_plot <- plotly::renderPlotly({
gprofiler2::gostplot(
gost(),
capped = FALSE,
interactive = TRUE
)
})
output$gost_details <- DT::renderDT({
data <- data.table(gost()$result)
setorder(data, p_value)
data[, total_ratio := term_size / effective_domain_size]
data[, query_ratio := intersection_size / query_size]
data[, increase := (query_ratio - total_ratio) / total_ratio]
2022-05-26 12:44:09 +02:00
data <- data[, .(
source,
term_name,
total_ratio,
query_ratio,
increase,
2022-05-26 12:44:09 +02:00
p_value
)]
dt <- DT::datatable(
data,
rownames = FALSE,
colnames = c(
"Source",
"Term",
"Total ratio",
"Query ratio",
"Increase",
2022-05-26 12:44:09 +02:00
"p-value"
),
options = list(
pageLength = 25
)
) |>
DT::formatRound("p_value", digits = 4) |>
DT::formatPercentage(
c("total_ratio", "query_ratio", "increase"),
digits = 2
)
2022-05-26 12:44:09 +02:00
})
}
2021-10-19 14:15:28 +02:00
}