geposanui/R/server.R

190 lines
5.3 KiB
R
Raw Normal View History

2021-10-20 15:34:52 +02:00
# Java script function to replace gene IDs with Ensembl gene links.
js_link <- DT::JS("function(row, data) {
2021-10-01 09:50:04 +02:00
let id = data[1];
var name = data[2];
if (!name) name = 'Unknown';
let url = `https://www.ensembl.org/Homo_sapiens/Gene/Summary?g=${id}`;
$('td:eq(1)', row).html(`<a href=\"${url}\" target=\"_blank\">${name}</a>`);
}")
server <- function(input, output, session) {
2021-10-21 14:56:19 +02:00
preset <- preset_editor_server("preset_editor")
2021-11-02 14:28:04 +01:00
2021-11-02 15:07:04 +01:00
observe({
species_count <- length(preset()$species_ids)
updateSliderInput(
session,
2021-11-02 14:28:04 +01:00
"n_species",
2021-11-02 15:07:04 +01:00
max = species_count
2021-11-02 14:28:04 +01:00
)
})
2021-10-20 15:34:52 +02:00
# Compute the results according to the preset.
2021-10-19 16:44:29 +02:00
analysis <- reactive({
2021-10-21 14:56:19 +02:00
preset <- preset()
2021-08-29 13:25:12 +02:00
2021-10-19 14:15:28 +02:00
# Perform the analysis cached based on the preset's hash.
analysis <- withProgress(
2021-10-19 15:05:01 +02:00
message = "Analyzing genes",
value = 0.0,
{ # nolint
2021-10-21 17:26:28 +02:00
geposan::analyze(preset, function(progress) {
setProgress(progress)
})
2021-10-19 15:05:01 +02:00
}
)
2021-10-19 14:15:28 +02:00
analysis
})
min_n_species <- reactive(input$n_species)
2021-10-20 11:20:20 +02:00
# Rank the results.
ranking <- methods_server("methods", analysis, min_n_species)
2021-10-20 11:20:20 +02:00
# Add gene information to the results.
results <- reactive({
merge(
ranking(),
geposan::genes,
by.x = "gene",
by.y = "id",
sort = FALSE
)
2021-08-26 11:20:50 +02:00
})
2021-08-25 15:01:18 +02:00
2021-11-02 13:41:03 +01:00
# Apply the filters.
2021-11-02 14:28:04 +01:00
results_filtered <- filters_server("filters", results)
2021-10-15 13:16:51 +02:00
2021-10-20 15:34:52 +02:00
output$genes <- DT::renderDT({
2021-10-15 11:46:15 +02:00
columns <- c("rank", "gene", "name", "chromosome", method_ids, "score")
column_names <- c("", "Gene", "", "Chromosome", method_names, "Score")
2021-10-15 09:26:57 +02:00
2021-10-20 15:34:52 +02:00
dt <- DT::datatable(
2021-10-15 15:03:40 +02:00
results_filtered()[, ..columns],
2021-08-26 12:51:43 +02:00
rownames = FALSE,
2021-10-15 09:26:57 +02:00
colnames = column_names,
2021-10-01 09:50:04 +02:00
style = "bootstrap",
2021-10-15 13:59:00 +02:00
fillContainer = TRUE,
2021-10-15 11:46:15 +02:00
extensions = "Scroller",
2021-10-01 09:50:04 +02:00
options = list(
rowCallback = js_link,
2021-10-15 11:46:15 +02:00
columnDefs = list(list(visible = FALSE, targets = 2)),
deferRender = TRUE,
scrollY = 200,
scroller = TRUE
2021-10-01 09:50:04 +02:00
)
2021-06-24 22:38:16 +02:00
)
2021-09-30 13:25:39 +02:00
2021-10-20 15:34:52 +02:00
DT::formatPercentage(dt, c(method_ids, "score"), digits = 1)
2021-06-24 22:38:16 +02:00
})
2021-10-07 12:59:04 +02:00
output$copy <- renderUI({
2021-10-15 15:03:40 +02:00
results <- results_filtered()
2021-10-07 12:59:04 +02:00
gene_ids <- results[, gene]
names <- results[name != "", name]
genes_text <- paste(gene_ids, collapse = "\n")
names_text <- paste(names, collapse = "\n")
splitLayout(
2021-10-15 13:59:00 +02:00
cellWidths = "auto",
2021-10-20 15:34:52 +02:00
rclipboard::rclipButton(
2021-10-07 12:59:04 +02:00
"copy_ids_button",
"Copy gene IDs",
genes_text,
2021-10-15 13:59:00 +02:00
icon = icon("clipboard")
2021-10-07 12:59:04 +02:00
),
2021-10-20 15:34:52 +02:00
rclipboard::rclipButton(
2021-10-07 12:59:04 +02:00
"copy_names_button",
"Copy gene names",
names_text,
2021-10-15 13:59:00 +02:00
icon = icon("clipboard")
2021-10-07 12:59:04 +02:00
)
)
})
2021-10-20 15:34:52 +02:00
output$scatter <- plotly::renderPlotly({
2021-10-15 15:03:40 +02:00
results <- results_filtered()
2021-08-29 13:25:12 +02:00
gene_ids <- results[input$genes_rows_selected, gene]
2021-09-16 00:06:54 +02:00
genes <- genes[id %chin% gene_ids]
2021-10-21 14:56:19 +02:00
species <- species[id %chin% preset()$species_ids]
2021-08-29 13:25:12 +02:00
2021-10-20 15:34:52 +02:00
scatter_plot(results, species, genes)
2021-06-24 22:38:16 +02:00
})
2021-10-07 12:18:47 +02:00
2021-10-15 15:03:40 +02:00
output$assessment_synopsis <- renderText({
2021-10-21 14:56:19 +02:00
reference_gene_ids <- preset()$reference_gene_ids
2021-10-15 15:03:40 +02:00
2021-10-20 11:30:32 +02:00
included_reference_count <- results_filtered()[
2021-10-15 15:03:40 +02:00
gene %chin% reference_gene_ids,
.N
]
reference_results <- results()[gene %chin% reference_gene_ids]
2021-10-20 11:30:32 +02:00
total_reference_count <- nrow(reference_results)
if (total_reference_count > 0) {
mean_rank <- as.character(round(
reference_results[, mean(rank)],
digits = 1
))
2021-10-21 11:43:34 +02:00
min_rank <- as.character(reference_results[, min(rank)])
2021-10-20 11:30:32 +02:00
max_rank <- as.character(reference_results[, max(rank)])
} else {
mean_rank <- "Unknown"
2021-10-21 11:43:34 +02:00
min_rank <- "Unknown"
2021-10-20 11:30:32 +02:00
max_rank <- "Unknown"
}
2021-10-15 15:03:40 +02:00
sprintf(
"Included reference genes: %i/%i<br> \
2021-10-20 11:30:32 +02:00
Mean rank of reference genes: %s<br> \
2021-10-21 11:43:34 +02:00
First rank of reference genes: %s<br> \
Last rank of reference genes: %s",
2021-10-20 11:30:32 +02:00
included_reference_count,
total_reference_count,
mean_rank,
2021-10-21 11:43:34 +02:00
min_rank,
2021-10-20 11:30:32 +02:00
max_rank
2021-10-15 15:03:40 +02:00
)
})
2021-10-20 15:34:52 +02:00
output$rank_plot <- plotly::renderPlotly({
2021-11-15 09:35:47 +01:00
geposan::plot_scores(
ranking(),
gene_sets = list(preset()$reference_gene_ids),
labels = "Reference genes",
2021-11-15 09:35:47 +01:00
max_rank = results_filtered()[, max(rank)]
)
})
output$boxplot <- plotly::renderPlotly({
geposan::plot_boxplot(
ranking(),
gene_sets = list(preset()$reference_gene_ids),
labels = "Reference genes"
2021-10-15 15:03:40 +02:00
)
})
2021-10-20 15:34:52 +02:00
output$gost <- plotly::renderPlotly({
2021-10-07 12:42:36 +02:00
if (input$enable_gost) {
2021-10-20 15:34:52 +02:00
result <- gprofiler2::gost(
results_filtered()[, gene],
ordered_query = TRUE
)
gprofiler2::gostplot(
result,
capped = FALSE,
interactive = TRUE
)
2021-10-07 12:42:36 +02:00
} else {
NULL
}
2021-10-07 12:18:47 +02:00
})
2021-10-19 14:15:28 +02:00
}