geposanui/R/server.R

224 lines
6.3 KiB
R
Raw Normal View History

2021-10-20 15:34:52 +02:00
# Java script function to replace gene IDs with Ensembl gene links.
js_link <- DT::JS("function(row, data) {
2021-10-01 09:50:04 +02:00
let id = data[1];
var name = data[2];
if (!name) name = 'Unknown';
let url = `https://www.ensembl.org/Homo_sapiens/Gene/Summary?g=${id}`;
$('td:eq(1)', row).html(`<a href=\"${url}\" target=\"_blank\">${name}</a>`);
}")
server <- function(input, output, session) {
2021-10-21 14:56:19 +02:00
preset <- preset_editor_server("preset_editor")
2021-11-02 14:28:04 +01:00
2021-10-20 15:34:52 +02:00
# Compute the results according to the preset.
2021-10-19 16:44:29 +02:00
analysis <- reactive({
2021-10-21 14:56:19 +02:00
preset <- preset()
2021-08-29 13:25:12 +02:00
2021-10-19 14:15:28 +02:00
# Perform the analysis cached based on the preset's hash.
analysis <- withProgress(
2021-10-19 15:05:01 +02:00
message = "Analyzing genes",
value = 0.0,
{ # nolint
2021-10-21 17:26:28 +02:00
geposan::analyze(preset, function(progress) {
setProgress(progress)
})
2021-10-19 15:05:01 +02:00
}
)
2021-10-19 14:15:28 +02:00
analysis
})
# Rank the results.
2021-11-17 22:58:55 +01:00
ranking <- methods_server("methods", analysis)
2021-10-20 11:20:20 +02:00
# Add gene information to the results.
results <- reactive({
merge(
ranking(),
geposan::genes,
by.x = "gene",
by.y = "id",
sort = FALSE
)
2021-08-26 11:20:50 +02:00
})
2021-08-25 15:01:18 +02:00
2021-11-02 13:41:03 +01:00
# Apply the filters.
2021-11-02 14:28:04 +01:00
results_filtered <- filters_server("filters", results)
2021-10-15 13:16:51 +02:00
2021-12-30 12:19:00 +01:00
# Server for the detailed results panel.
results_server("results", results_filtered)
2021-10-07 12:59:04 +02:00
2021-12-30 12:19:00 +01:00
comparison_gene_ids <- comparison_editor_server("comparison_editor", preset)
2021-10-07 12:59:04 +02:00
2021-10-20 15:34:52 +02:00
output$scatter <- plotly::renderPlotly({
2021-11-15 15:12:42 +01:00
preset <- preset()
2021-12-02 17:22:27 +01:00
gene_sets <- list("Reference genes" = preset$reference_gene_ids)
comparison_gene_ids <- comparison_gene_ids()
2021-08-29 13:25:12 +02:00
2021-11-15 15:12:42 +01:00
if (length(comparison_gene_ids) >= 1) {
2021-12-02 17:22:27 +01:00
gene_sets <- c(
gene_sets,
list("Comparison genes" = comparison_gene_ids)
)
2021-11-15 15:12:42 +01:00
}
2021-12-02 17:22:27 +01:00
geposan::plot_positions(preset$species_ids, gene_sets)
2021-06-24 22:38:16 +02:00
})
2021-10-07 12:18:47 +02:00
2021-10-20 15:34:52 +02:00
output$rank_plot <- plotly::renderPlotly({
2021-12-02 17:22:27 +01:00
preset <- preset()
gene_sets <- list("Reference genes" = preset$reference_gene_ids)
comparison_gene_ids <- comparison_gene_ids()
2021-11-15 14:22:33 +01:00
if (length(comparison_gene_ids) >= 1) {
2021-12-02 17:22:27 +01:00
gene_sets <- c(
gene_sets,
list("Comparison genes" = comparison_gene_ids)
)
2021-11-15 14:22:33 +01:00
}
2021-11-15 09:35:47 +01:00
geposan::plot_scores(
ranking(),
2021-11-15 14:22:33 +01:00
gene_sets = gene_sets,
2021-11-15 09:35:47 +01:00
max_rank = results_filtered()[, max(rank)]
)
})
2021-12-06 14:24:31 +01:00
output$rankings_plot <- plotly::renderPlotly({
preset <- preset()
gene_sets <- list("Reference genes" = preset$reference_gene_ids)
comparison_gene_ids <- comparison_gene_ids()
if (length(comparison_gene_ids) >= 1) {
gene_sets <- c(
gene_sets,
list("Comparison genes" = comparison_gene_ids)
)
}
all <- ranking()
2021-12-16 13:52:14 +01:00
clustering <- geposan::ranking(all, list(clustering = 1))
2021-12-06 14:24:31 +01:00
correlation <- geposan::ranking(all, list(correlation = 1))
neural <- geposan::ranking(all, list(neural = 1))
adjacency <- geposan::ranking(all, list(adjacency = 1))
proximity <- geposan::ranking(all, list(proximity = 1))
rankings <- list(
2021-12-16 13:52:14 +01:00
"Clustering" = clustering,
2021-12-06 14:24:31 +01:00
"Correlation" = correlation,
"Neural" = neural,
"Adjacency" = adjacency,
"Proximity" = proximity,
"Combined" = all
)
geposan::plot_rankings(rankings, gene_sets)
})
2021-11-15 09:35:47 +01:00
output$boxplot <- plotly::renderPlotly({
2021-12-02 17:22:27 +01:00
preset <- preset()
gene_sets <- list("Reference genes" = preset$reference_gene_ids)
comparison_gene_ids <- comparison_gene_ids()
2021-11-15 14:22:33 +01:00
if (length(comparison_gene_ids) >= 1) {
2021-12-02 17:22:27 +01:00
gene_sets <- c(
gene_sets,
list("Comparison genes" = comparison_gene_ids)
)
2021-11-15 14:22:33 +01:00
}
2021-12-02 17:22:27 +01:00
geposan::plot_boxplot(ranking(), gene_sets)
2021-10-15 15:03:40 +02:00
})
2021-12-08 14:38:38 +01:00
gost <- reactive({
2021-12-08 14:49:50 +01:00
withProgress(
2021-12-08 14:38:38 +01:00
message = "Querying g:Profiler",
value = 0.0,
{ # nolint
setProgress(0.2)
gprofiler2::gost(results_filtered()[, gene])
}
2021-12-08 14:49:50 +01:00
)
2021-12-08 14:38:38 +01:00
})
output$gost_plot <- plotly::renderPlotly({
gprofiler2::gostplot(
gost(),
capped = FALSE,
interactive = TRUE
)
})
output$gost_details <- DT::renderDT({
data <- data.table(gost()$result)
setorder(data, p_value)
data[, total_ratio := term_size / effective_domain_size]
data[, query_ratio := intersection_size / query_size]
2021-10-20 15:34:52 +02:00
2021-12-08 14:49:50 +01:00
data <- data[, .(source, term_name, total_ratio, query_ratio, p_value)]
2021-12-08 14:38:38 +01:00
dt <- DT::datatable(
2021-12-08 14:49:50 +01:00
data,
2021-12-08 14:38:38 +01:00
rownames = FALSE,
colnames = c(
"Source",
"Term",
"Total ratio",
"Query ratio",
2021-12-08 14:49:50 +01:00
"p-value"
2021-12-08 14:38:38 +01:00
),
style = "bootstrap",
options = list(
pageLength = 25
2021-10-20 15:34:52 +02:00
)
2021-12-08 14:38:38 +01:00
)
dt <- DT::formatRound(dt, "p_value", digits = 4)
dt <- DT::formatPercentage(
dt,
c("total_ratio", "query_ratio"),
digits = 1
)
2021-10-07 12:18:47 +02:00
})
2021-12-08 14:49:50 +01:00
output$disgenet <- DT::renderDT({
withProgress(
message = "Querying DisGeNET",
value = 0.0,
{ # nolint
setProgress(0.2)
gene_names <- results_filtered()[, name]
gene_names <- unique(gene_names[gene_names != ""])
diseases <- disgenet2r::disease_enrichment(gene_names)
data <- data.table(diseases@qresult)
data <- data[, .(Description, Ratio, BgRatio, pvalue)]
setorder(data, pvalue)
dt <- DT::datatable(
data,
rownames = FALSE,
colnames = c(
"Disease",
"Query ratio",
"Total ratio",
"p-value"
),
style = "bootstrap",
options = list(
pageLength = 25
)
)
dt <- DT::formatRound(dt, "pvalue", digits = 4)
dt
}
)
})
2021-10-19 14:15:28 +02:00
}