mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-26 10:47:25 +01:00
preset: Remove min_n_species customization
This commit is contained in:
parent
33056bfa40
commit
de1c1ed40e
3 changed files with 48 additions and 31 deletions
12
R/analyze.R
12
R/analyze.R
|
|
@ -75,17 +75,7 @@ analyze <- function(preset, progress = NULL) {
|
|||
total_progress <- total_progress + 1 / method_count
|
||||
}
|
||||
|
||||
# Count included species from the preset per gene.
|
||||
genes_n_species <- geposan::distances[
|
||||
species %chin% preset$species_ids,
|
||||
.(n_species = .N),
|
||||
by = "gene"
|
||||
]
|
||||
|
||||
setkey(genes_n_species, "gene")
|
||||
|
||||
# Return the results for genes with enough species.
|
||||
results[genes_n_species[gene, n_species] >= preset$min_n_species]
|
||||
results
|
||||
})
|
||||
|
||||
if (!is.null(progress)) {
|
||||
|
|
|
|||
42
R/preset.R
42
R/preset.R
|
|
@ -2,20 +2,28 @@
|
|||
#'
|
||||
#' A preset is used to specify which methods and inputs should be used for an
|
||||
#' analysis. Note that the genes to process should normally include the
|
||||
#' reference genes to be able to assess the results later.
|
||||
#' reference genes to be able to assess the results later. The genes will be
|
||||
#' filtered based on how many species have data for them. Genes which only have
|
||||
#' orthologs for less than 25% of the input species will be excluded from the
|
||||
#' preset and the analyis.
|
||||
#'
|
||||
#' Available methods are:
|
||||
#'
|
||||
#' - `clusteriness` How much the gene distances cluster across species.
|
||||
#' - `correlation` The mean correlation with the reference genes.
|
||||
#' - `clusteriness` How much the gene distances to the nearest telomere
|
||||
#' cluster across species.
|
||||
#' - `clusteriness_positions` The same as `clusteriness` but using absolute
|
||||
#' gene positions instead of distances.
|
||||
#' - `correlation` The mean correlation of gene distances to the nearest
|
||||
#' telomere across species.
|
||||
#' - `correlation_positions` Correlation using position data.
|
||||
#' - `neural` Assessment by neural network trained using distances.
|
||||
#' - `neural_positions` Assessment by neural network trained using absolute
|
||||
#' position data.
|
||||
#' - `proximity` Mean proximity to telomeres.
|
||||
#' - `neural` Assessment by neural network.
|
||||
#'
|
||||
#' @param methods Methods to apply.
|
||||
#' @param species_ids IDs of species to include.
|
||||
#' @param gene_ids IDs of genes to screen.
|
||||
#' @param min_n_species Minimum number of orthologs that a gene should have to
|
||||
#' be included in the analysis.
|
||||
#' @param reference_gene_ids IDs of reference genes to compare to.
|
||||
#'
|
||||
#' @return The preset to use with [analyze()].
|
||||
|
|
@ -23,22 +31,36 @@
|
|||
#' @export
|
||||
preset <- function(methods = c(
|
||||
"clusteriness",
|
||||
"clusteriness_positions",
|
||||
"correlation",
|
||||
"correlation_positions",
|
||||
"neural",
|
||||
"neural_positions",
|
||||
"proximity"
|
||||
),
|
||||
species_ids = NULL,
|
||||
gene_ids = NULL,
|
||||
min_n_species = 10,
|
||||
reference_gene_ids = NULL) {
|
||||
# Count included species per gene.
|
||||
genes_n_species <- geposan::distances[
|
||||
species %chin% species_ids,
|
||||
.(n_species = .N),
|
||||
by = "gene"
|
||||
]
|
||||
|
||||
# Filter out genes with less than 25% existing orthologs.
|
||||
gene_ids_filtered <- genes_n_species[
|
||||
n_species >= 0.25 * length(species_ids),
|
||||
gene
|
||||
]
|
||||
|
||||
# The included data gets sorted to be able to produce predictable hashes
|
||||
# for the object later.
|
||||
structure(
|
||||
list(
|
||||
methods = sort(methods),
|
||||
species_ids = sort(species_ids),
|
||||
gene_ids = sort(gene_ids),
|
||||
min_n_species = as.numeric(min_n_species),
|
||||
gene_ids = sort(gene_ids_filtered),
|
||||
reference_gene_ids = sort(reference_gene_ids)
|
||||
),
|
||||
class = "geposan_preset"
|
||||
|
|
@ -64,8 +86,6 @@ print.geposan_preset <- function(x, ...) {
|
|||
length(x$gene_ids)
|
||||
))
|
||||
|
||||
cat(sprintf("\n Species per gene: \u2265 %i", x$min_n_species))
|
||||
|
||||
cat(sprintf(
|
||||
"\n Comparison data: %i reference genes\n",
|
||||
length(x$reference_gene_ids)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue