mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-26 10:47:25 +01:00
Move species count to analysis
This commit is contained in:
parent
f84d37dd30
commit
33056bfa40
6 changed files with 30 additions and 45 deletions
18
R/analyze.R
18
R/analyze.R
|
|
@ -75,13 +75,23 @@ analyze <- function(preset, progress = NULL) {
|
|||
total_progress <- total_progress + 1 / method_count
|
||||
}
|
||||
|
||||
if (!is.null(progress)) {
|
||||
progress(1.0)
|
||||
}
|
||||
# Count included species from the preset per gene.
|
||||
genes_n_species <- geposan::distances[
|
||||
species %chin% preset$species_ids,
|
||||
.(n_species = .N),
|
||||
by = "gene"
|
||||
]
|
||||
|
||||
results
|
||||
setkey(genes_n_species, "gene")
|
||||
|
||||
# Return the results for genes with enough species.
|
||||
results[genes_n_species[gene, n_species] >= preset$min_n_species]
|
||||
})
|
||||
|
||||
if (!is.null(progress)) {
|
||||
progress(1.0)
|
||||
}
|
||||
|
||||
structure(
|
||||
list(
|
||||
preset = preset,
|
||||
|
|
|
|||
|
|
@ -14,6 +14,8 @@
|
|||
#' @param methods Methods to apply.
|
||||
#' @param species_ids IDs of species to include.
|
||||
#' @param gene_ids IDs of genes to screen.
|
||||
#' @param min_n_species Minimum number of orthologs that a gene should have to
|
||||
#' be included in the analysis.
|
||||
#' @param reference_gene_ids IDs of reference genes to compare to.
|
||||
#'
|
||||
#' @return The preset to use with [analyze()].
|
||||
|
|
@ -27,6 +29,7 @@ preset <- function(methods = c(
|
|||
),
|
||||
species_ids = NULL,
|
||||
gene_ids = NULL,
|
||||
min_n_species = 10,
|
||||
reference_gene_ids = NULL) {
|
||||
# The included data gets sorted to be able to produce predictable hashes
|
||||
# for the object later.
|
||||
|
|
@ -35,6 +38,7 @@ preset <- function(methods = c(
|
|||
methods = sort(methods),
|
||||
species_ids = sort(species_ids),
|
||||
gene_ids = sort(gene_ids),
|
||||
min_n_species = as.numeric(min_n_species),
|
||||
reference_gene_ids = sort(reference_gene_ids)
|
||||
),
|
||||
class = "geposan_preset"
|
||||
|
|
@ -60,6 +64,8 @@ print.geposan_preset <- function(x, ...) {
|
|||
length(x$gene_ids)
|
||||
))
|
||||
|
||||
cat(sprintf("\n Species per gene: \u2265 %i", x$min_n_species))
|
||||
|
||||
cat(sprintf(
|
||||
"\n Comparison data: %i reference genes\n",
|
||||
length(x$reference_gene_ids)
|
||||
|
|
|
|||
30
R/ranking.R
30
R/ranking.R
|
|
@ -6,33 +6,18 @@
|
|||
#' @param analysis Analysis object resulting from [analyze()].
|
||||
#' @param weights Named list pairing method names with weighting factors. Only
|
||||
#' methods that are contained within this list will be included.
|
||||
#' @param min_n_species Minimum number of required species per gene. Genes that
|
||||
#' have fewer species will not be included in the ranking.
|
||||
#'
|
||||
#' @returns A ranking object. The object extends the analysis result with
|
||||
#' additional columns containing the `score` and the `rank` of each gene. It
|
||||
#' will be ordered by rank.
|
||||
#'
|
||||
#' @export
|
||||
ranking <- function(analysis, weights, min_n_species = 10) {
|
||||
ranking <- function(analysis, weights) {
|
||||
if (!"geposan_analysis" %chin% class(analysis)) {
|
||||
stop("Invalid analyis. Use geposan::analyze().")
|
||||
}
|
||||
|
||||
# Count included species from the preset per gene.
|
||||
genes_n_species <- geposan::distances[
|
||||
species %chin% analysis$preset$species_ids,
|
||||
.(n_species = .N),
|
||||
by = "gene"
|
||||
]
|
||||
|
||||
setkey(genes_n_species, gene)
|
||||
|
||||
# Exclude genes with too few species.
|
||||
ranking <- analysis$results[
|
||||
genes_n_species[gene, n_species] >= min_n_species
|
||||
]
|
||||
|
||||
ranking <- copy(analysis$results)
|
||||
ranking[, score := 0.0]
|
||||
|
||||
for (method in names(weights)) {
|
||||
|
|
@ -65,16 +50,13 @@ ranking <- function(analysis, weights, min_n_species = 10) {
|
|||
#' @param reference_gene_ids IDs of the reference genes.
|
||||
#' @param target The optimization target. It may be one of "mean", "min" or
|
||||
#' "max" and results in the respective rank being optimized.
|
||||
#' @param min_n_species Minimum number of required species per gene. Genes that
|
||||
#' have fewer species will not be included in the rankings used to find the
|
||||
#' optimal weights.
|
||||
#'
|
||||
#' @returns Named list pairing method names with their optimal weights. This
|
||||
#' can be used as an argument to [ranking()].
|
||||
#'
|
||||
#' @export
|
||||
optimal_weights <- function(analysis, methods, reference_gene_ids,
|
||||
target = "mean", min_n_species = 10) {
|
||||
target = "mean") {
|
||||
if (!"geposan_analysis" %chin% class(analysis)) {
|
||||
stop("Invalid analyis. Use geposan::analyze().")
|
||||
}
|
||||
|
|
@ -92,11 +74,7 @@ optimal_weights <- function(analysis, methods, reference_gene_ids,
|
|||
|
||||
# Compute the target rank of the reference genes when applying the weights.
|
||||
target_rank <- function(factors) {
|
||||
data <- ranking(
|
||||
analysis,
|
||||
weights(factors),
|
||||
min_n_species = min_n_species
|
||||
)
|
||||
data <- ranking(analysis, weights(factors))
|
||||
|
||||
result <- data[gene %chin% reference_gene_ids, if (target == "min") {
|
||||
min(rank)
|
||||
|
|
|
|||
|
|
@ -4,13 +4,7 @@
|
|||
\alias{optimal_weights}
|
||||
\title{Find the best weights to rank the results.}
|
||||
\usage{
|
||||
optimal_weights(
|
||||
analysis,
|
||||
methods,
|
||||
reference_gene_ids,
|
||||
target = "mean",
|
||||
min_n_species = 10
|
||||
)
|
||||
optimal_weights(analysis, methods, reference_gene_ids, target = "mean")
|
||||
}
|
||||
\arguments{
|
||||
\item{analysis}{Results from \code{\link[=analyze]{analyze()}} or \code{\link[=ranking]{ranking()}}.}
|
||||
|
|
@ -21,10 +15,6 @@ optimal_weights(
|
|||
|
||||
\item{target}{The optimization target. It may be one of "mean", "min" or
|
||||
"max" and results in the respective rank being optimized.}
|
||||
|
||||
\item{min_n_species}{Minimum number of required species per gene. Genes that
|
||||
have fewer species will not be included in the rankings used to find the
|
||||
optimal weights.}
|
||||
}
|
||||
\value{
|
||||
Named list pairing method names with their optimal weights. This
|
||||
|
|
|
|||
|
|
@ -8,6 +8,7 @@ preset(
|
|||
methods = c("clusteriness", "correlation", "neural", "proximity"),
|
||||
species_ids = NULL,
|
||||
gene_ids = NULL,
|
||||
min_n_species = 10,
|
||||
reference_gene_ids = NULL
|
||||
)
|
||||
}
|
||||
|
|
@ -18,6 +19,9 @@ preset(
|
|||
|
||||
\item{gene_ids}{IDs of genes to screen.}
|
||||
|
||||
\item{min_n_species}{Minimum number of orthologs that a gene should have to
|
||||
be included in the analysis.}
|
||||
|
||||
\item{reference_gene_ids}{IDs of reference genes to compare to.}
|
||||
}
|
||||
\value{
|
||||
|
|
|
|||
|
|
@ -4,16 +4,13 @@
|
|||
\alias{ranking}
|
||||
\title{Rank the results by computing a score.}
|
||||
\usage{
|
||||
ranking(analysis, weights, min_n_species = 10)
|
||||
ranking(analysis, weights)
|
||||
}
|
||||
\arguments{
|
||||
\item{analysis}{Analysis object resulting from \code{\link[=analyze]{analyze()}}.}
|
||||
|
||||
\item{weights}{Named list pairing method names with weighting factors. Only
|
||||
methods that are contained within this list will be included.}
|
||||
|
||||
\item{min_n_species}{Minimum number of required species per gene. Genes that
|
||||
have fewer species will not be included in the ranking.}
|
||||
}
|
||||
\value{
|
||||
A ranking object. The object extends the analysis result with
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue