mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-26 10:47:25 +01:00
Add framework for progress information
This commit is contained in:
parent
16e83d38a8
commit
37f468658c
6 changed files with 76 additions and 11 deletions
28
R/analyze.R
28
R/analyze.R
|
|
@ -31,18 +31,23 @@ preset <- function(methods, species, genes, reference_genes) {
|
|||
#' Analyze by applying the specified preset.
|
||||
#'
|
||||
#' @param preset The preset to use which can be created using [preset()].
|
||||
#' @param progress A function to be called for progress information. The
|
||||
#' function should accept a number between 0.0 and 1.0 for the current
|
||||
#' progress.
|
||||
#'
|
||||
#' @return A [data.table] with one row for each gene identified by it's ID
|
||||
#' (`gene` column). The additional columns contain the resulting scores per
|
||||
#' method and are named after the method IDs.
|
||||
#'
|
||||
#' @export
|
||||
analyze <- function(preset) {
|
||||
analyze <- function(preset, progress = NULL) {
|
||||
# Available methods by ID.
|
||||
#
|
||||
# A method describes a way to perform a computation on gene distance data
|
||||
# that results in a single score per gene. The function should accept the
|
||||
# preset to apply as a single parameter (see [preset()]).
|
||||
# distances data, the preset to apply (see [preset()]) and an optional
|
||||
# progress function (that may be called with a number between 0.0 and 1.0)
|
||||
# as its parameters.
|
||||
#
|
||||
# The function should return a [data.table] with the following columns:
|
||||
#
|
||||
|
|
@ -55,10 +60,21 @@ analyze <- function(preset) {
|
|||
"neural" = neural
|
||||
)
|
||||
|
||||
total_progress <- 0.0
|
||||
method_count <- length(preset$method_ids)
|
||||
results <- data.table(gene = genes$id)
|
||||
|
||||
for (method_id in preset$method_ids) {
|
||||
method_results <- methods[[method_id]](distances, preset)
|
||||
method_progress <- if (!is.null(progress)) function(p) {
|
||||
progress(total_progress + p / method_count)
|
||||
}
|
||||
|
||||
method_results <- methods[[method_id]](
|
||||
distances,
|
||||
preset,
|
||||
method_progress
|
||||
)
|
||||
|
||||
setnames(method_results, "score", method_id)
|
||||
|
||||
results <- merge(
|
||||
|
|
@ -66,6 +82,12 @@ analyze <- function(preset) {
|
|||
method_results,
|
||||
by = "gene"
|
||||
)
|
||||
|
||||
total_progress <- total_progress + 1 / method_count
|
||||
}
|
||||
|
||||
if (!is.null(progress)) {
|
||||
progress(1.0)
|
||||
}
|
||||
|
||||
results
|
||||
|
|
|
|||
|
|
@ -36,7 +36,7 @@ clusteriness_priv <- function(data, height = 1000000) {
|
|||
}
|
||||
|
||||
# Process genes clustering their distance to telomeres.
|
||||
clusteriness <- function(distances, preset) {
|
||||
clusteriness <- function(distances, preset, progress = NULL) {
|
||||
results <- data.table(gene = preset$gene_ids)
|
||||
|
||||
# Prefilter the input data by species.
|
||||
|
|
@ -45,9 +45,19 @@ clusteriness <- function(distances, preset) {
|
|||
# Add an index for quickly accessing data per gene.
|
||||
setkey(distances, gene)
|
||||
|
||||
genes_done <- 0
|
||||
genes_total <- length(preset$gene_ids)
|
||||
|
||||
# Perform the cluster analysis for one gene.
|
||||
compute <- function(gene_id) {
|
||||
clusteriness_priv(distances[gene_id, distance])
|
||||
score <- clusteriness_priv(distances[gene_id, distance])
|
||||
|
||||
if (!is.null(progress)) {
|
||||
genes_done <<- genes_done + 1
|
||||
progress(genes_done / genes_total)
|
||||
}
|
||||
|
||||
score
|
||||
}
|
||||
|
||||
results[, score := compute(gene), by = 1:nrow(results)]
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
# Compute the mean correlation coefficient comparing gene distances with a set
|
||||
# of reference genes.
|
||||
correlation <- function(distances, preset) {
|
||||
correlation <- function(distances, preset, progress = NULL) {
|
||||
results <- data.table(gene = preset$gene_ids)
|
||||
reference_gene_ids <- preset$reference_gene_ids
|
||||
reference_count <- length(reference_gene_ids)
|
||||
|
|
@ -14,6 +14,9 @@ correlation <- function(distances, preset) {
|
|||
# Prepare the reference genes' data.
|
||||
reference_distances <- distances[gene %chin% reference_gene_ids]
|
||||
|
||||
genes_done <- 0
|
||||
genes_total <- length(preset$gene_ids)
|
||||
|
||||
# Perform the correlation for one gene.
|
||||
compute <- function(gene_id) {
|
||||
gene_distances <- distances[gene_id]
|
||||
|
|
@ -29,7 +32,7 @@ correlation <- function(distances, preset) {
|
|||
|
||||
# Correlate with all reference genes but not with the gene itself.
|
||||
for (reference_gene_id in
|
||||
reference_gene_ids[reference_gene_ids != gene_id]) {
|
||||
reference_gene_ids[reference_gene_ids != gene_id]) {
|
||||
data <- merge(
|
||||
gene_distances,
|
||||
reference_distances[reference_gene_id],
|
||||
|
|
@ -55,6 +58,13 @@ correlation <- function(distances, preset) {
|
|||
|
||||
# Compute the score as the mean correlation coefficient.
|
||||
score <- correlation_sum / reference_count
|
||||
|
||||
if (!is.null(progress)) {
|
||||
genes_done <<- genes_done + 1
|
||||
progress(genes_done / genes_total)
|
||||
}
|
||||
|
||||
score
|
||||
}
|
||||
|
||||
results[, score := compute(gene), by = 1:nrow(results)]
|
||||
|
|
|
|||
16
R/neural.R
16
R/neural.R
|
|
@ -1,7 +1,7 @@
|
|||
# Find genes by training a neural network on reference position data.
|
||||
#
|
||||
# @param seed A seed to get reproducible results.
|
||||
neural <- function(distances, preset, seed = 448077) {
|
||||
neural <- function(distances, preset, progress = NULL, seed = 448077) {
|
||||
species_ids <- preset$species_ids
|
||||
reference_gene_ids <- preset$reference_gene_ids
|
||||
|
||||
|
|
@ -89,8 +89,20 @@ neural <- function(distances, preset, seed = 448077) {
|
|||
linear.output = FALSE
|
||||
)
|
||||
|
||||
# Return the resulting scores given by applying the neural network.
|
||||
if (!is.null(progress)) {
|
||||
# We do everything in one go, so it's not possible to report detailed
|
||||
# progress information. As the method is relatively quick, this should
|
||||
# not be a problem.
|
||||
progress(0.5)
|
||||
}
|
||||
|
||||
# Apply the neural network.
|
||||
data[, score := neuralnet::compute(nn, data)$net.result]
|
||||
|
||||
if (!is.null(progress)) {
|
||||
# See above.
|
||||
progress(1.0)
|
||||
}
|
||||
|
||||
data[, .(gene, score)]
|
||||
}
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
#
|
||||
# A score will be given to each gene such that 0.0 corresponds to the maximal
|
||||
# mean distance across all genes and 1.0 corresponds to a distance of 0.
|
||||
proximity <- function(distances, preset) {
|
||||
proximity <- function(distances, preset, progress = NULL) {
|
||||
# Prefilter distances by species and gene.
|
||||
distances <- distances[
|
||||
species %chin% preset$species_ids & gene %chin% preset$gene_ids
|
||||
|
|
@ -14,5 +14,12 @@ proximity <- function(distances, preset) {
|
|||
max_distance <- distances[, max(mean_distance)]
|
||||
distances[, score := 1 - mean_distance / max_distance]
|
||||
|
||||
if (!is.null(progress)) {
|
||||
# We do everything in one go, so it's not possible to report detailed
|
||||
# progress information. As the method is relatively quick, this should
|
||||
# not be a problem.
|
||||
progress(1.0)
|
||||
}
|
||||
|
||||
distances[, .(gene, score)]
|
||||
}
|
||||
|
|
|
|||
|
|
@ -4,10 +4,14 @@
|
|||
\alias{analyze}
|
||||
\title{Analyze by applying the specified preset.}
|
||||
\usage{
|
||||
analyze(preset)
|
||||
analyze(preset, progress = NULL)
|
||||
}
|
||||
\arguments{
|
||||
\item{preset}{The preset to use which can be created using \code{\link[=preset]{preset()}}.}
|
||||
|
||||
\item{progress}{A function to be called for progress information. The
|
||||
function should accept a number between 0.0 and 1.0 for the current
|
||||
progress.}
|
||||
}
|
||||
\value{
|
||||
A \link{data.table} with one row for each gene identified by it's ID
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue