diff --git a/R/analyze.R b/R/analyze.R index 1389b52..ea47a65 100644 --- a/R/analyze.R +++ b/R/analyze.R @@ -31,18 +31,23 @@ preset <- function(methods, species, genes, reference_genes) { #' Analyze by applying the specified preset. #' #' @param preset The preset to use which can be created using [preset()]. +#' @param progress A function to be called for progress information. The +#' function should accept a number between 0.0 and 1.0 for the current +#' progress. #' #' @return A [data.table] with one row for each gene identified by it's ID #' (`gene` column). The additional columns contain the resulting scores per #' method and are named after the method IDs. #' #' @export -analyze <- function(preset) { +analyze <- function(preset, progress = NULL) { # Available methods by ID. # # A method describes a way to perform a computation on gene distance data # that results in a single score per gene. The function should accept the - # preset to apply as a single parameter (see [preset()]). + # distances data, the preset to apply (see [preset()]) and an optional + # progress function (that may be called with a number between 0.0 and 1.0) + # as its parameters. # # The function should return a [data.table] with the following columns: # @@ -55,10 +60,21 @@ analyze <- function(preset) { "neural" = neural ) + total_progress <- 0.0 + method_count <- length(preset$method_ids) results <- data.table(gene = genes$id) for (method_id in preset$method_ids) { - method_results <- methods[[method_id]](distances, preset) + method_progress <- if (!is.null(progress)) function(p) { + progress(total_progress + p / method_count) + } + + method_results <- methods[[method_id]]( + distances, + preset, + method_progress + ) + setnames(method_results, "score", method_id) results <- merge( @@ -66,6 +82,12 @@ analyze <- function(preset) { method_results, by = "gene" ) + + total_progress <- total_progress + 1 / method_count + } + + if (!is.null(progress)) { + progress(1.0) } results diff --git a/R/clusteriness.R b/R/clusteriness.R index 9f8e74e..e8be0d9 100644 --- a/R/clusteriness.R +++ b/R/clusteriness.R @@ -36,7 +36,7 @@ clusteriness_priv <- function(data, height = 1000000) { } # Process genes clustering their distance to telomeres. -clusteriness <- function(distances, preset) { +clusteriness <- function(distances, preset, progress = NULL) { results <- data.table(gene = preset$gene_ids) # Prefilter the input data by species. @@ -45,9 +45,19 @@ clusteriness <- function(distances, preset) { # Add an index for quickly accessing data per gene. setkey(distances, gene) + genes_done <- 0 + genes_total <- length(preset$gene_ids) + # Perform the cluster analysis for one gene. compute <- function(gene_id) { - clusteriness_priv(distances[gene_id, distance]) + score <- clusteriness_priv(distances[gene_id, distance]) + + if (!is.null(progress)) { + genes_done <<- genes_done + 1 + progress(genes_done / genes_total) + } + + score } results[, score := compute(gene), by = 1:nrow(results)] diff --git a/R/correlation.R b/R/correlation.R index 040b4b5..f038eae 100644 --- a/R/correlation.R +++ b/R/correlation.R @@ -1,6 +1,6 @@ # Compute the mean correlation coefficient comparing gene distances with a set # of reference genes. -correlation <- function(distances, preset) { +correlation <- function(distances, preset, progress = NULL) { results <- data.table(gene = preset$gene_ids) reference_gene_ids <- preset$reference_gene_ids reference_count <- length(reference_gene_ids) @@ -14,6 +14,9 @@ correlation <- function(distances, preset) { # Prepare the reference genes' data. reference_distances <- distances[gene %chin% reference_gene_ids] + genes_done <- 0 + genes_total <- length(preset$gene_ids) + # Perform the correlation for one gene. compute <- function(gene_id) { gene_distances <- distances[gene_id] @@ -29,7 +32,7 @@ correlation <- function(distances, preset) { # Correlate with all reference genes but not with the gene itself. for (reference_gene_id in - reference_gene_ids[reference_gene_ids != gene_id]) { + reference_gene_ids[reference_gene_ids != gene_id]) { data <- merge( gene_distances, reference_distances[reference_gene_id], @@ -55,6 +58,13 @@ correlation <- function(distances, preset) { # Compute the score as the mean correlation coefficient. score <- correlation_sum / reference_count + + if (!is.null(progress)) { + genes_done <<- genes_done + 1 + progress(genes_done / genes_total) + } + + score } results[, score := compute(gene), by = 1:nrow(results)] diff --git a/R/neural.R b/R/neural.R index 5618009..bb2a3c6 100644 --- a/R/neural.R +++ b/R/neural.R @@ -1,7 +1,7 @@ # Find genes by training a neural network on reference position data. # # @param seed A seed to get reproducible results. -neural <- function(distances, preset, seed = 448077) { +neural <- function(distances, preset, progress = NULL, seed = 448077) { species_ids <- preset$species_ids reference_gene_ids <- preset$reference_gene_ids @@ -89,8 +89,20 @@ neural <- function(distances, preset, seed = 448077) { linear.output = FALSE ) - # Return the resulting scores given by applying the neural network. + if (!is.null(progress)) { + # We do everything in one go, so it's not possible to report detailed + # progress information. As the method is relatively quick, this should + # not be a problem. + progress(0.5) + } + # Apply the neural network. data[, score := neuralnet::compute(nn, data)$net.result] + + if (!is.null(progress)) { + # See above. + progress(1.0) + } + data[, .(gene, score)] } diff --git a/R/proximity.R b/R/proximity.R index a64e398..35d549f 100644 --- a/R/proximity.R +++ b/R/proximity.R @@ -2,7 +2,7 @@ # # A score will be given to each gene such that 0.0 corresponds to the maximal # mean distance across all genes and 1.0 corresponds to a distance of 0. -proximity <- function(distances, preset) { +proximity <- function(distances, preset, progress = NULL) { # Prefilter distances by species and gene. distances <- distances[ species %chin% preset$species_ids & gene %chin% preset$gene_ids @@ -14,5 +14,12 @@ proximity <- function(distances, preset) { max_distance <- distances[, max(mean_distance)] distances[, score := 1 - mean_distance / max_distance] + if (!is.null(progress)) { + # We do everything in one go, so it's not possible to report detailed + # progress information. As the method is relatively quick, this should + # not be a problem. + progress(1.0) + } + distances[, .(gene, score)] } diff --git a/man/analyze.Rd b/man/analyze.Rd index 99d9211..c814c50 100644 --- a/man/analyze.Rd +++ b/man/analyze.Rd @@ -4,10 +4,14 @@ \alias{analyze} \title{Analyze by applying the specified preset.} \usage{ -analyze(preset) +analyze(preset, progress = NULL) } \arguments{ \item{preset}{The preset to use which can be created using \code{\link[=preset]{preset()}}.} + +\item{progress}{A function to be called for progress information. The +function should accept a number between 0.0 and 1.0 for the current +progress.} } \value{ A \link{data.table} with one row for each gene identified by it's ID