2021-10-19 13:39:55 +02:00
|
|
|
# Perform a cluster analysis.
|
|
|
|
|
#
|
|
|
|
|
# This function will cluster the data using `hclust` and `cutree` (with the
|
|
|
|
|
# specified height). Every cluster with at least two members qualifies for
|
|
|
|
|
# further analysis. Clusters are then ranked based on their size in relation
|
|
|
|
|
# to the number of values. The return value is a final score between zero and
|
|
|
|
|
# one. Lower ranking clusters contribute less to this score.
|
|
|
|
|
clusteriness_priv <- function(data, height = 1000000) {
|
|
|
|
|
n <- length(data)
|
|
|
|
|
|
|
|
|
|
# Return a score of 0.0 if there is just one or no value at all.
|
|
|
|
|
if (n < 2) {
|
|
|
|
|
return(0.0)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
# Cluster the data and compute the cluster sizes.
|
|
|
|
|
|
|
|
|
|
tree <- stats::hclust(stats::dist(data))
|
|
|
|
|
clusters <- stats::cutree(tree, h = height)
|
|
|
|
|
cluster_sizes <- sort(tabulate(clusters), decreasing = TRUE)
|
|
|
|
|
|
|
|
|
|
# Compute the "clusteriness" score.
|
|
|
|
|
|
|
|
|
|
score <- 0.0
|
|
|
|
|
|
|
|
|
|
for (i in seq_along(cluster_sizes)) {
|
|
|
|
|
cluster_size <- cluster_sizes[i]
|
|
|
|
|
|
|
|
|
|
if (cluster_size >= 2) {
|
|
|
|
|
cluster_score <- cluster_size / n
|
|
|
|
|
score <- score + cluster_score / i
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
score
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
# Process genes clustering their distance to telomeres.
|
2021-11-05 19:49:54 +01:00
|
|
|
clusteriness <- function(preset, use_positions = FALSE, progress = NULL) {
|
2021-10-21 17:25:44 +02:00
|
|
|
species_ids <- preset$species_ids
|
|
|
|
|
gene_ids <- preset$gene_ids
|
2021-10-19 13:39:55 +02:00
|
|
|
|
2021-11-05 19:49:54 +01:00
|
|
|
cached("clusteriness", c(species_ids, gene_ids, use_positions), {
|
2021-10-21 17:25:44 +02:00
|
|
|
results <- data.table(gene = gene_ids)
|
2021-10-19 13:39:55 +02:00
|
|
|
|
2021-10-21 17:25:44 +02:00
|
|
|
# Prefilter the input data by species.
|
|
|
|
|
distances <- geposan::distances[species %chin% species_ids]
|
2021-10-19 13:39:55 +02:00
|
|
|
|
2021-10-21 17:25:44 +02:00
|
|
|
# Add an index for quickly accessing data per gene.
|
|
|
|
|
setkey(distances, gene)
|
2021-10-19 15:03:10 +02:00
|
|
|
|
2021-10-21 17:25:44 +02:00
|
|
|
genes_done <- 0
|
|
|
|
|
genes_total <- length(gene_ids)
|
2021-10-19 15:03:10 +02:00
|
|
|
|
2021-10-21 17:25:44 +02:00
|
|
|
# Perform the cluster analysis for one gene.
|
|
|
|
|
compute <- function(gene_id) {
|
2021-11-05 19:49:54 +01:00
|
|
|
data <- if (use_positions) {
|
|
|
|
|
distances[gene_id, position]
|
|
|
|
|
} else {
|
|
|
|
|
distances[gene_id, distance]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
score <- clusteriness_priv(data)
|
2021-10-19 15:03:10 +02:00
|
|
|
|
2021-10-21 17:25:44 +02:00
|
|
|
if (!is.null(progress)) {
|
|
|
|
|
genes_done <<- genes_done + 1
|
|
|
|
|
progress(genes_done / genes_total)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
score
|
|
|
|
|
}
|
2021-10-19 13:39:55 +02:00
|
|
|
|
2021-10-21 17:25:44 +02:00
|
|
|
results[, score := compute(gene), by = 1:nrow(results)]
|
|
|
|
|
})
|
2021-10-19 13:39:55 +02:00
|
|
|
}
|