# This script performs a gene set enrichment analysis (GSEA) across the whole # ranking of ubiquituos genes using g:Profiler. # Size of each gene bucket. The GSEA is done once for each bucket within the # ranking. bucket_size <- 500 library(data.table) library(here) i_am("scripts/gsea.R") file_path <- here("scripts", "output", "ubigen_gsea.Rds") image_path <- here("scripts", "output", "ubigen_gsea.svg") # The result will be saved in `file_path` to avoid unnecessary API calls. result <- if (file.exists(file_path)) { readRDS(file_path) } else { data <- copy(ubigen::genes) data[, bucket := ceiling(rank / bucket_size)] result <- data[, .(analysis = list(gprofiler2::gost(gene))), by = bucket] saveRDS(result, file = file_path) result } result[, result := lapply(analysis, function (a) a$result)] result <- result[, rbindlist(result), by = bucket] result <- result[source %chin% c("GO:CC", "GO:BP", "GO:MF")] result[source == "GO:CC", label := "Cellular component"] result[source == "GO:BP", label := "Biological pathway"] result[source == "GO:MF", label := "Molecular function"] data <- result[, .(count = .N, label = unique(label)), by = c("bucket", "source") ] fig <- plotly::plot_ly() |> plotly::add_bars( data = data, x = ~bucket, y = ~count, color = ~label ) |> plotly::layout( xaxis = list(title = "Bucket of genes (n = 500)"), yaxis = list(title = "Number of associated terms"), barmode = "stack" ) plotly::save_image(fig, image_path, width = 1200, height = 800)