geposanui/server.R

84 lines
No EOL
2.2 KiB
R

library(data.table)
library(DT)
library(shiny)
source("init.R")
source("scatter_plot.R")
server <- function(input, output) {
#' This reactive expression applies all user defined filters as well as the
#' desired ranking weights to the results.
results <- reactive({
# Select the species preset.
results <- if (input$species == "all") {
results_all
} else {
results_replicative
}
# Apply user defined filters.
results <- results[
cluster_length >= input$length &
cluster_mean >= input$range[1] * 1000000 &
cluster_mean <= input$range[2] * 1000000
]
# Compute scoring factors and the weighted score.
cluster_max <- results[, max(cluster_length)]
results[, cluster_score := cluster_length / cluster_max]
results[, score := input$clustering / 100 * cluster_score +
input$correlation / 100 * r_mean]
# Order the results based on their score. The resulting index will be
# used as the "rank".
setorder(results, -score)
})
output$genes <- renderDT({
datatable(
results()[, .(.I, name, cluster_length, r_mean)],
rownames = FALSE,
colnames = c(
"Rank",
"Gene",
"Cluster length",
"Correlation"
),
style = "bootstrap"
)
})
output$synposis <- renderText({
results <- results()
sprintf(
"Found %i candidates including %i/%i verified and %i/%i suggested \
TPE-OLD genes.",
results[, .N],
results[verified == TRUE, .N],
genes[verified == TRUE, .N],
results[suggested == TRUE, .N],
genes[suggested == TRUE, .N]
)
})
output$scatter <- renderPlot({
results <- results()
gene_ids <- results[input$genes_rows_selected, gene]
genes <- genes[id %chin% gene_ids]
species <- if (input$species == "all") {
species
} else {
species[replicative == TRUE]
}
scatter_plot(results, species, genes, distances)
})
}