mirror of
https://github.com/johrpan/geposanui.git
synced 2025-10-26 11:17:24 +01:00
68 lines
No EOL
1.9 KiB
R
68 lines
No EOL
1.9 KiB
R
library(data.table)
|
|
library(progress)
|
|
library(rlog)
|
|
|
|
#' Process genes clustering their distance to telomeres.
|
|
#'
|
|
#' The return value will be a data.table with the following columns:
|
|
#'
|
|
#' - `gene` Gene ID of the processed gene.
|
|
#' - `cluster_length` Length of the largest cluster.
|
|
#' - `cluster_mean` Mean value of the largest cluster.
|
|
#' - `cluster_species` List of species contributing to the largest cluster.
|
|
#'
|
|
#' @param distances Gene distance data to use.
|
|
#' @param species_ids IDs of species to include in the analysis.
|
|
#' @param gene_ids Genes to include in the computation.
|
|
process_clustering <- function(distances, species_ids, gene_ids) {
|
|
results <- data.table(gene = gene_ids)
|
|
gene_count <- length(gene_ids)
|
|
|
|
log_info(sprintf(
|
|
"Clustering %i genes from %i species",
|
|
gene_count,
|
|
length(species_ids)
|
|
))
|
|
|
|
progress <- progress_bar$new(
|
|
total = gene_count,
|
|
format = "Clustering genes [:bar] :percent (ETA :eta)"
|
|
)
|
|
|
|
for (i in 1:gene_count) {
|
|
progress$tick()
|
|
|
|
gene_id <- gene_ids[i]
|
|
|
|
data <- distances[
|
|
species %chin% species_ids & gene == gene_id,
|
|
.(species, distance)
|
|
]
|
|
|
|
if (data[, .N] < 12) {
|
|
next
|
|
}
|
|
|
|
clusters <- hclust(dist(data[, distance]))
|
|
clusters_cut <- cutree(clusters, h = 1000000)
|
|
|
|
# Find the largest cluster
|
|
cluster_indices <- unique(clusters_cut)
|
|
cluster_index <- cluster_indices[
|
|
which.max(tabulate(match(clusters_cut, cluster_indices)))
|
|
]
|
|
|
|
cluster <- data[which(clusters_cut == cluster_index)]
|
|
|
|
results[
|
|
gene == gene_id,
|
|
`:=`(
|
|
cluster_length = cluster[, .N],
|
|
cluster_mean = mean(cluster[, distance]),
|
|
cluster_species = list(cluster[, species])
|
|
)
|
|
]
|
|
}
|
|
|
|
results
|
|
} |