geposanui/clustering.R

68 lines
No EOL
1.9 KiB
R

library(data.table)
library(progress)
library(rlog)
#' Process genes clustering their distance to telomeres.
#'
#' The return value will be a data.table with the following columns:
#'
#' - `gene` Gene ID of the processed gene.
#' - `cluster_length` Length of the largest cluster.
#' - `cluster_mean` Mean value of the largest cluster.
#' - `cluster_species` List of species contributing to the largest cluster.
#'
#' @param distances Gene distance data to use.
#' @param species_ids IDs of species to include in the analysis.
#' @param gene_ids Genes to include in the computation.
process_clustering <- function(distances, species_ids, gene_ids) {
results <- data.table(gene = gene_ids)
gene_count <- length(gene_ids)
log_info(sprintf(
"Clustering %i genes from %i species",
gene_count,
length(species_ids)
))
progress <- progress_bar$new(
total = gene_count,
format = "Clustering genes [:bar] :percent (ETA :eta)"
)
for (i in 1:gene_count) {
progress$tick()
gene_id <- gene_ids[i]
data <- distances[
species %chin% species_ids & gene == gene_id,
.(species, distance)
]
if (data[, .N] < 12) {
next
}
clusters <- hclust(dist(data[, distance]))
clusters_cut <- cutree(clusters, h = 1000000)
# Find the largest cluster
cluster_indices <- unique(clusters_cut)
cluster_index <- cluster_indices[
which.max(tabulate(match(clusters_cut, cluster_indices)))
]
cluster <- data[which(clusters_cut == cluster_index)]
results[
gene == gene_id,
`:=`(
cluster_length = cluster[, .N],
cluster_mean = mean(cluster[, distance]),
cluster_species = list(cluster[, species])
)
]
}
results
}