mirror of
https://github.com/johrpan/geposanui.git
synced 2025-10-26 11:17:24 +01:00
189 lines
5.3 KiB
R
189 lines
5.3 KiB
R
# Java script function to replace gene IDs with Ensembl gene links.
|
|
js_link <- DT::JS("function(row, data) {
|
|
let id = data[1];
|
|
var name = data[2];
|
|
if (!name) name = 'Unknown';
|
|
let url = `https://www.ensembl.org/Homo_sapiens/Gene/Summary?g=${id}`;
|
|
$('td:eq(1)', row).html(`<a href=\"${url}\" target=\"_blank\">${name}</a>`);
|
|
}")
|
|
|
|
server <- function(input, output, session) {
|
|
preset <- preset_editor_server("preset_editor")
|
|
|
|
observe({
|
|
species_count <- length(preset()$species_ids)
|
|
updateSliderInput(
|
|
session,
|
|
"n_species",
|
|
max = species_count
|
|
)
|
|
})
|
|
|
|
# Compute the results according to the preset.
|
|
analysis <- reactive({
|
|
preset <- preset()
|
|
|
|
# Perform the analysis cached based on the preset's hash.
|
|
analysis <- withProgress(
|
|
message = "Analyzing genes",
|
|
value = 0.0,
|
|
{ # nolint
|
|
geposan::analyze(preset, function(progress) {
|
|
setProgress(progress)
|
|
})
|
|
}
|
|
)
|
|
|
|
analysis
|
|
})
|
|
|
|
min_n_species <- reactive(input$n_species)
|
|
|
|
# Rank the results.
|
|
ranking <- methods_server("methods", analysis, min_n_species)
|
|
|
|
# Add gene information to the results.
|
|
results <- reactive({
|
|
merge(
|
|
ranking(),
|
|
geposan::genes,
|
|
by.x = "gene",
|
|
by.y = "id",
|
|
sort = FALSE
|
|
)
|
|
})
|
|
|
|
# Apply the filters.
|
|
results_filtered <- filters_server("filters", results)
|
|
|
|
output$genes <- DT::renderDT({
|
|
columns <- c("rank", "gene", "name", "chromosome", method_ids, "score")
|
|
column_names <- c("", "Gene", "", "Chromosome", method_names, "Score")
|
|
|
|
dt <- DT::datatable(
|
|
results_filtered()[, ..columns],
|
|
rownames = FALSE,
|
|
colnames = column_names,
|
|
style = "bootstrap",
|
|
fillContainer = TRUE,
|
|
extensions = "Scroller",
|
|
options = list(
|
|
rowCallback = js_link,
|
|
columnDefs = list(list(visible = FALSE, targets = 2)),
|
|
deferRender = TRUE,
|
|
scrollY = 200,
|
|
scroller = TRUE
|
|
)
|
|
)
|
|
|
|
DT::formatPercentage(dt, c(method_ids, "score"), digits = 1)
|
|
})
|
|
|
|
output$copy <- renderUI({
|
|
results <- results_filtered()
|
|
|
|
gene_ids <- results[, gene]
|
|
names <- results[name != "", name]
|
|
|
|
genes_text <- paste(gene_ids, collapse = "\n")
|
|
names_text <- paste(names, collapse = "\n")
|
|
|
|
splitLayout(
|
|
cellWidths = "auto",
|
|
rclipboard::rclipButton(
|
|
"copy_ids_button",
|
|
"Copy gene IDs",
|
|
genes_text,
|
|
icon = icon("clipboard")
|
|
),
|
|
rclipboard::rclipButton(
|
|
"copy_names_button",
|
|
"Copy gene names",
|
|
names_text,
|
|
icon = icon("clipboard")
|
|
)
|
|
)
|
|
})
|
|
|
|
output$scatter <- plotly::renderPlotly({
|
|
results <- results_filtered()
|
|
|
|
gene_ids <- results[input$genes_rows_selected, gene]
|
|
genes <- genes[id %chin% gene_ids]
|
|
species <- species[id %chin% preset()$species_ids]
|
|
|
|
scatter_plot(results, species, genes)
|
|
})
|
|
|
|
output$assessment_synopsis <- renderText({
|
|
reference_gene_ids <- preset()$reference_gene_ids
|
|
|
|
included_reference_count <- results_filtered()[
|
|
gene %chin% reference_gene_ids,
|
|
.N
|
|
]
|
|
|
|
reference_results <- results()[gene %chin% reference_gene_ids]
|
|
total_reference_count <- nrow(reference_results)
|
|
|
|
if (total_reference_count > 0) {
|
|
mean_rank <- as.character(round(
|
|
reference_results[, mean(rank)],
|
|
digits = 1
|
|
))
|
|
|
|
min_rank <- as.character(reference_results[, min(rank)])
|
|
max_rank <- as.character(reference_results[, max(rank)])
|
|
} else {
|
|
mean_rank <- "Unknown"
|
|
min_rank <- "Unknown"
|
|
max_rank <- "Unknown"
|
|
}
|
|
|
|
sprintf(
|
|
"Included reference genes: %i/%i<br> \
|
|
Mean rank of reference genes: %s<br> \
|
|
First rank of reference genes: %s<br> \
|
|
Last rank of reference genes: %s",
|
|
included_reference_count,
|
|
total_reference_count,
|
|
mean_rank,
|
|
min_rank,
|
|
max_rank
|
|
)
|
|
})
|
|
|
|
output$rank_plot <- plotly::renderPlotly({
|
|
geposan::plot_scores(
|
|
ranking(),
|
|
gene_sets = list(preset()$reference_gene_ids),
|
|
labels = "TPE-OLD genes",
|
|
max_rank = results_filtered()[, max(rank)]
|
|
)
|
|
})
|
|
|
|
output$boxplot <- plotly::renderPlotly({
|
|
geposan::plot_boxplot(
|
|
ranking(),
|
|
gene_sets = list(preset()$reference_gene_ids),
|
|
labels = "TPE-OLD genes"
|
|
)
|
|
})
|
|
|
|
output$gost <- plotly::renderPlotly({
|
|
if (input$enable_gost) {
|
|
result <- gprofiler2::gost(
|
|
results_filtered()[, gene],
|
|
ordered_query = TRUE
|
|
)
|
|
|
|
gprofiler2::gostplot(
|
|
result,
|
|
capped = FALSE,
|
|
interactive = TRUE
|
|
)
|
|
} else {
|
|
NULL
|
|
}
|
|
})
|
|
}
|