geposanui/clustering.R

65 lines
No EOL
2 KiB
R

library(data.table)
#' Perform a cluster analysis.
#'
#' This function will cluster the data using `hclust` and `cutree` (with the
#' specified height). Every cluster with at least two members qualifies for
#' further analysis. Clusters are then ranked based on their size in relation
#' to the total number of possible values (`n`). The return value is a final
#' score between zero and one. Lower ranking clusters contribute less to this
#' score.
clusteriness <- function(data, n, height = 1000000) {
# Return a score of 0.0 if there is just one or no value at all.
if (length(data) < 2) {
return(0.0)
}
# Cluster the data and compute the cluster sizes.
tree <- hclust(dist(data))
clusters <- cutree(tree, h = height)
cluster_sizes <- sort(tabulate(clusters), decreasing = TRUE)
# Compute the "clusteriness" score.
score <- 0.0
for (i in seq_along(cluster_sizes)) {
cluster_size <- cluster_sizes[i]
if (cluster_size >= 2) {
cluster_score <- cluster_size / n
score <- score + cluster_score / i
}
}
score
}
#' Process genes clustering their distance to telomeres.
#'
#' The return value will be a data.table with the following columns:
#'
#' - `gene` Gene ID of the processed gene.
#' - `clusteriness` Score quantidying the gene's clusters.
#'
#' @param distances Gene distance data to use.
#' @param species_ids IDs of species to include in the analysis.
#' @param gene_ids Genes to include in the computation.
process_clustering <- function(distances, species_ids, gene_ids) {
results <- data.table(gene = gene_ids)
species_count <- length(species)
# Prefilter the input data by species.
distances <- distances[species %chin% species_ids]
# Add an index for quickly accessing data per gene.
setkey(distances, gene)
#' Perform the cluster analysis for one gene.
compute <- function(gene_id) {
clusteriness(distances[gene_id, distance], species_count)
}
results[, clusteriness := compute(gene), by = 1:nrow(results)]
}