geposanui/data.R
Elias Projahn 998009b418 data: Simplify data structure
This commit also adds the input data to the index.
2021-06-24 20:20:46 +02:00

84 lines
No EOL
2.7 KiB
R

library(dplyr)
library(readr)
library(tibble)
#' Load and preprocess input data from `path`.
#'
#' A file named `cache.rds` will be created within that directory to reuse the
#' results for future runs. To forcefully recompute, delete that file.
#'
#' @seealso [load_data()]
load_data_cached <- function(path) {
cache_file <- paste(path, "cache.rds", sep = "/")
if (!file.exists(cache_file)) {
# If the cache file doesn't exist, we have to do the computation.
data <- load_data(path)
# The results are cached for the next run.
saveRDS(data, cache_file)
data
} else {
# If the cache file exists, we restore the data from it.
readRDS(cache_file)
}
}
#' Merge genome data from files in `path` into `tibble`s.
#'
#' The result will be a list with named elements:
#' - `genes` will be a table with metadata on human genes.
#' - `species` will contain metadata on each species.
#' - `distances` will contain each species' genes' distances to the telomere.
#'
#' @seealso [load_data_cached()]
load_data <- function(path) {
genes <- read_tsv(paste(path, "genes.tsv", sep = "/"))
species <- read_csv(paste(path, "species.csv", sep = "/"))
distances <- tibble(geneid = integer())
# Each file will contain data on one species.
file_names <- list.files(paste(path, "genomes", sep = "/"))
# Table containing additional columns to be added to the species table
# later.
species_computed <- tibble(
id = character(),
median_distance = numeric()
)
for (file_name in file_names) {
species_id <- strsplit(file_name, split = ".", fixed = TRUE)[[1]][1]
species_path <- paste(path, "genomes", file_name, sep = "/")
species_distances <- read_tsv(species_path)
# Compute the median distance across all genes of this species.
median_distance <- species_distances %>%
select(dist) %>%
summarise(median_distance = median(dist)) %>%
pull(median_distance)
# Cache the values to be added to the species table.
species_computed <- species_computed %>% add_row(
id = species_id,
median_distance = median_distance,
)
# Column names have to be unique for each species.
# TODO: How to create a dynamic column name using `rename()`?
species_distances <- species_distances %>%
rename_with(function(x) species_id, dist)
distances <- full_join(distances, species_distances)
}
# Add additional columns to the original species table.
species <- left_join(species, species_computed)
list(
genes = genes,
species = species,
distances = distances
)
}