geposanui/R/server.R

265 lines
7.5 KiB
R

# Java script function to replace gene IDs with Ensembl gene links.
js_link <- DT::JS("function(row, data) {
let id = data[1];
var name = data[2];
if (!name) name = 'Unknown';
let url = `https://www.ensembl.org/Homo_sapiens/Gene/Summary?g=${id}`;
$('td:eq(1)', row).html(`<a href=\"${url}\" target=\"_blank\">${name}</a>`);
}")
server <- function(input, output, session) {
preset <- preset_editor_server("preset_editor")
# Compute the results according to the preset.
analysis <- reactive({
preset <- preset()
# Perform the analysis cached based on the preset's hash.
analysis <- withProgress(
message = "Analyzing genes",
value = 0.0,
{ # nolint
geposan::analyze(preset, function(progress) {
setProgress(progress)
})
}
)
analysis
})
# Rank the results.
ranking <- methods_server("methods", analysis)
# Add gene information to the results.
results <- reactive({
merge(
ranking(),
geposan::genes,
by.x = "gene",
by.y = "id",
sort = FALSE
)
})
# Apply the filters.
results_filtered <- filters_server("filters", results)
comparison_gene_ids <- comparison_editor_server("comparison_editor", preset)
output$genes <- DT::renderDT({
columns <- c("rank", "gene", "name", "chromosome", method_ids, "score")
column_names <- c("", "Gene", "", "Chromosome", method_names, "Score")
dt <- DT::datatable(
results_filtered()[, ..columns],
rownames = FALSE,
colnames = column_names,
style = "bootstrap",
options = list(
rowCallback = js_link,
columnDefs = list(list(visible = FALSE, targets = 2)),
pageLength = 25
)
)
DT::formatPercentage(dt, c(method_ids, "score"), digits = 1)
})
output$copy <- renderUI({
results <- results_filtered()
gene_ids <- results[, gene]
names <- results[name != "", name]
genes_text <- paste(gene_ids, collapse = "\n")
names_text <- paste(names, collapse = "\n")
splitLayout(
cellWidths = "auto",
rclipboard::rclipButton(
"copy_ids_button",
"Copy gene IDs",
genes_text,
icon = icon("clipboard")
),
rclipboard::rclipButton(
"copy_names_button",
"Copy gene names",
names_text,
icon = icon("clipboard")
)
)
})
output$scatter <- plotly::renderPlotly({
preset <- preset()
gene_sets <- list("Reference genes" = preset$reference_gene_ids)
comparison_gene_ids <- comparison_gene_ids()
if (length(comparison_gene_ids) >= 1) {
gene_sets <- c(
gene_sets,
list("Comparison genes" = comparison_gene_ids)
)
}
geposan::plot_positions(preset$species_ids, gene_sets)
})
output$rank_plot <- plotly::renderPlotly({
preset <- preset()
gene_sets <- list("Reference genes" = preset$reference_gene_ids)
comparison_gene_ids <- comparison_gene_ids()
if (length(comparison_gene_ids) >= 1) {
gene_sets <- c(
gene_sets,
list("Comparison genes" = comparison_gene_ids)
)
}
geposan::plot_scores(
ranking(),
gene_sets = gene_sets,
max_rank = results_filtered()[, max(rank)]
)
})
output$rankings_plot <- plotly::renderPlotly({
preset <- preset()
gene_sets <- list("Reference genes" = preset$reference_gene_ids)
comparison_gene_ids <- comparison_gene_ids()
if (length(comparison_gene_ids) >= 1) {
gene_sets <- c(
gene_sets,
list("Comparison genes" = comparison_gene_ids)
)
}
all <- ranking()
clusteriness <- geposan::ranking(all, list(clusteriness = 1))
correlation <- geposan::ranking(all, list(correlation = 1))
neural <- geposan::ranking(all, list(neural = 1))
adjacency <- geposan::ranking(all, list(adjacency = 1))
proximity <- geposan::ranking(all, list(proximity = 1))
rankings <- list(
"Clusteriness" = clusteriness,
"Correlation" = correlation,
"Neural" = neural,
"Adjacency" = adjacency,
"Proximity" = proximity,
"Combined" = all
)
geposan::plot_rankings(rankings, gene_sets)
})
output$boxplot <- plotly::renderPlotly({
preset <- preset()
gene_sets <- list("Reference genes" = preset$reference_gene_ids)
comparison_gene_ids <- comparison_gene_ids()
if (length(comparison_gene_ids) >= 1) {
gene_sets <- c(
gene_sets,
list("Comparison genes" = comparison_gene_ids)
)
}
geposan::plot_boxplot(ranking(), gene_sets)
})
gost <- reactive({
withProgress(
message = "Querying g:Profiler",
value = 0.0,
{ # nolint
setProgress(0.2)
gprofiler2::gost(results_filtered()[, gene])
}
)
})
output$gost_plot <- plotly::renderPlotly({
gprofiler2::gostplot(
gost(),
capped = FALSE,
interactive = TRUE
)
})
output$gost_details <- DT::renderDT({
data <- data.table(gost()$result)
setorder(data, p_value)
data[, total_ratio := term_size / effective_domain_size]
data[, query_ratio := intersection_size / query_size]
data <- data[, .(source, term_name, total_ratio, query_ratio, p_value)]
dt <- DT::datatable(
data,
rownames = FALSE,
colnames = c(
"Source",
"Term",
"Total ratio",
"Query ratio",
"p-value"
),
style = "bootstrap",
options = list(
pageLength = 25
)
)
dt <- DT::formatRound(dt, "p_value", digits = 4)
dt <- DT::formatPercentage(
dt,
c("total_ratio", "query_ratio"),
digits = 1
)
})
output$disgenet <- DT::renderDT({
withProgress(
message = "Querying DisGeNET",
value = 0.0,
{ # nolint
setProgress(0.2)
gene_names <- results_filtered()[, name]
gene_names <- unique(gene_names[gene_names != ""])
diseases <- disgenet2r::disease_enrichment(gene_names)
data <- data.table(diseases@qresult)
data <- data[, .(Description, Ratio, BgRatio, pvalue)]
setorder(data, pvalue)
dt <- DT::datatable(
data,
rownames = FALSE,
colnames = c(
"Disease",
"Query ratio",
"Total ratio",
"p-value"
),
style = "bootstrap",
options = list(
pageLength = 25
)
)
dt <- DT::formatRound(dt, "pvalue", digits = 4)
dt
}
)
})
}