mirror of
https://github.com/johrpan/geposanui.git
synced 2025-10-26 11:17:24 +01:00
52 lines
No EOL
1.5 KiB
R
52 lines
No EOL
1.5 KiB
R
library(data.table)
|
|
library(rlog)
|
|
|
|
#' Process genes screening for a likely TPE-OLD.
|
|
#'
|
|
#' The return value will be a table containing genes and data to take in
|
|
#' account when regarding them as TPE-OLD candidates.
|
|
#'
|
|
#' @param input Data from [`load_input()`].
|
|
#' @param species_ids IDs of species to include in the analysis.
|
|
process_input <- function(input, species_ids) {
|
|
results <- data.table(gene = input$genes$id)
|
|
|
|
gene_ids <- input$genes[, id]
|
|
gene_count <- length(gene_ids)
|
|
|
|
for (i in seq_along(gene_ids)) {
|
|
gene_id <- gene_ids[i]
|
|
log_info(sprintf("Processing gene %i/%i (%i)", i, gene_count, gene_id))
|
|
|
|
distances <- input$distances[
|
|
species %chin% species_ids & gene == gene_id,
|
|
.(species, distance)
|
|
]
|
|
|
|
if (distances[, .N] < 12) {
|
|
next
|
|
}
|
|
|
|
clusters <- hclust(dist(distances[, distance]))
|
|
clusters_cut <- cutree(clusters, h = 1000000)
|
|
|
|
# Find the largest cluster
|
|
cluster_indices <- unique(clusters_cut)
|
|
cluster_index <- cluster_indices[
|
|
which.max(tabulate(match(clusters_cut, cluster_indices)))
|
|
]
|
|
|
|
cluster <- distances[which(clusters_cut == cluster_index)]
|
|
|
|
results[
|
|
gene == gene_id,
|
|
`:=`(
|
|
cluster_length = cluster[, .N],
|
|
cluster_mean = mean(cluster[, distance]),
|
|
cluster_species = list(cluster[, species])
|
|
)
|
|
]
|
|
}
|
|
|
|
results
|
|
} |