geposanui/R/methods.R

139 lines
3.6 KiB
R

# Construct UI for the methods editor.
methods_ui <- function(id) {
verticalLayout(
h3("Methods"),
selectInput(
NS(id, "optimization_genes"),
"Genes to optimize for",
choices = list(
"Reference genes" = "reference",
"Comparison genes" = "comparison"
)
),
selectInput(
NS(id, "optimization_target"),
"Optimization target",
choices = list(
"Number of included genes" = "combined",
"Mean rank" = "mean",
"Median rank" = "median",
"First rank" = "min",
"Last rank" = "max",
"Customize weights" = "custom"
)
),
lapply(geposan::all_methods(), function(method) {
verticalLayout(
checkboxInput(
NS(id, method$id),
span(
method$description,
class = "control-label"
),
value = TRUE
),
sliderInput(
NS(id, sprintf("%s_weight", method$id)),
NULL,
min = -1.0,
max = 1.0,
step = 0.01,
value = 1.0
)
)
})
)
}
# Construct server for the methods editor.
#
# @param analysis The reactive containing the results to be weighted.
#
# @return A reactive containing the weighted results.
methods_server <- function(id, analysis, comparison_gene_ids) {
moduleServer(id, function(input, output, session) {
# Observe each method's enable button and synchronise the slider state.
lapply(geposan::all_methods(), function(method) {
observeEvent(input[[method$id]], {
shinyjs::toggleState(
sprintf("%s_weight", method$id),
condition = input[[method$id]]
)
})
shinyjs::onclick(sprintf("%s_weight", method$id), {
updateSelectInput(
session,
"optimization_target",
selected = "custom"
)
})
})
# This reactive will always contain the currently selected optimization
# gene IDs in a normalized form.
optimization_gene_ids <- reactive({
gene_ids <- if (input$optimization_genes == "comparison") {
comparison_gene_ids()
} else {
analysis()$preset$reference_gene_ids
}
sort(unique(gene_ids))
})
# This reactive will always contain the optimal weights according to
# the selected parameters.
optimal_weights <- reactive({
withProgress(message = "Optimizing weights", {
setProgress(0.2)
included_methods <- NULL
for (method in geposan::all_methods()) {
if (input[[method$id]]) {
included_methods <- c(included_methods, method$id)
}
}
geposan::optimal_weights(
analysis(),
included_methods,
optimization_gene_ids(),
target = input$optimization_target
)
})
}) |> bindCache(
analysis(),
optimization_gene_ids(),
sapply(geposan::all_methods(), function(method) input[[method$id]]),
input$optimization_target
)
reactive({
weights <- NULL
if (length(optimization_gene_ids()) < 1 |
input$optimization_target == "custom") {
for (method in geposan::all_methods()) {
if (input[[method$id]]) {
weight <- input[[sprintf("%s_weight", method$id)]]
weights[[method$id]] <- weight
}
}
} else {
weights <- optimal_weights()
for (method_id in names(weights)) {
updateSliderInput(
session,
sprintf("%s_weight", method_id),
value = weights[[method_id]]
)
}
}
geposan::ranking(analysis(), weights)
})
})
}