geposanui/data.R

88 lines
No EOL
2.8 KiB
R

library(data.table)
#' Load and preprocess input data from `path`.
#'
#' A file named `cache.rds` will be created within that directory to reuse the
#' results for future runs. To forcefully recompute, delete that file.
#'
#' @seealso [load_data()]
load_data_cached <- function(path) {
cache_file <- paste(path, "cache.rds", sep = "/")
if (!file.exists(cache_file)) {
# If the cache file doesn't exist, we have to do the computation.
data <- load_data(path)
# The results are cached for the next run.
saveRDS(data, cache_file)
data
} else {
# If the cache file exists, we restore the data from it.
readRDS(cache_file)
}
}
#' Merge genome data from files in `path` into `data.table`s.
#'
#' The result will be a list with named elements:
#' - `genes` will be a table with metadata on human genes.
#' - `species` will contain metadata on each species.
#' - `distances` will contain each species' genes' distances to the telomere.
#'
#' @seealso [load_data_cached()]
load_data <- function(path) {
genes <- fread(paste(path, "genes.tsv", sep = "/"))
original_species <- fread(paste(path, "species.csv", sep = "/"))
species <- data.table(
id = character(),
label = character(),
median_distance = numeric()
)
distances <- data.table(
species = character(),
gene = integer(),
distance = integer()
)
# Each file will contain data on one species.
file_names <- list.files(paste(path, "genomes", sep = "/"))
for (file_name in file_names) {
species_id <- strsplit(file_name, split = ".", fixed = TRUE)[[1]][1]
# Only continue for replicatively aging species.
# TODO: Which other species should be included?
if (original_species[id == species_id, group] == "replicative") {
species_path <- paste(path, "genomes", file_name, sep = "/")
species_distances <- fread(species_path)
# Compute the median distance across all genes of this species and
# add it to the species table along other static data.
species <- rbindlist(list(species, data.table(
id = species_id,
label = original_species[id == species_id, label],
median_distance = median(species_distances[, dist])
)))
species_distances <- data.table(
species = species_id,
gene = species_distances[, geneid],
distance = species_distances[, dist]
)
distances <- rbindlist(list(distances, species_distances))
}
}
# Order species by there median distance.
setorder(species, median_distance)
list(
genes = genes,
species = species,
distances = distances
)
}