geposanui/server.R

117 lines
No EOL
2.8 KiB
R

library(data.table)
library(DT)
library(shiny)
source("input.R")
source("process.R")
source("scatter_plot.R")
source("util.R")
# Initialize global static data
inputs <- run_cached("input", load_input, "input")
#' All species excluding species with naturally or artificially short
#' chromosomes.
species_qualified <- inputs$species[median_distance >= 7500000]
#' All known replicatively aging species with long enough chromosomes.
species_replicative <- species_qualified[group == "replicative"]
#' Results computed from [`species_qualified`].
results_all <- run_cached(
"results_all",
process_input,
inputs,
species_qualified[, id]
)
#' Results computed from [`species_replicative`].
results_replicative <- run_cached(
"results_replicative",
process_input,
inputs,
species_replicative[, id]
)
# Add gene information to results for display.
results_all <- merge(
results_all,
inputs$genes,
by.x = "gene",
by.y = "id"
)
results_replicative <- merge(
results_replicative,
inputs$genes,
by.x = "gene",
by.y = "id"
)
# Order results by cluster length descendingly.
# TODO: Once other methods have been added, this has to be dynamic.
setorder(results_all, -cluster_length)
setorder(results_replicative, -cluster_length)
server <- function(input, output) {
#' This expression applies all user defined filters to the available
#' results.
results <- reactive({
results <- if (input$species == "all") {
results_all
} else {
results_replicative
}
results[
cluster_length >= input$length &
cluster_mean >= input$range[1] * 1000000 &
cluster_mean <= input$range[2] * 1000000
]
})
output$genes <- renderDT({
datatable(
results()[, .(.I, name, chromosome, cluster_length, cluster_mean)],
rownames = FALSE,
colnames = c(
"Rank",
"Gene",
"Chromosome",
"Cluster length",
"Cluster mean"
),
style = "bootstrap"
)
})
output$synposis <- renderText({
results <- results()
sprintf(
"Found %i candidates including %i/%i verified and %i/%i suggested \
TPE-OLD genes.",
results[, .N],
results[verified == TRUE, .N],
inputs$genes[verified == TRUE, .N],
results[suggested == TRUE, .N],
inputs$genes[suggested == TRUE, .N]
)
})
output$scatter <- renderPlot({
results <- results()
gene_ids <- results[input$genes_rows_selected, gene]
species <- if (input$species == "all") {
species_qualified
} else {
species_replicative
}
scatter_plot(gene_ids, inputs, results, species)
})
}