# Java script function to replace gene IDs with Ensembl gene links.
js_link <- DT::JS("function(row, data) {
let id = data[1];
var name = data[2];
if (!name) name = 'Unknown';
let url = `https://www.ensembl.org/Homo_sapiens/Gene/Summary?g=${id}`;
$('td:eq(1)', row).html(`${name}`);
}")
server <- function(input, output, session) {
preset <- preset_editor_server("preset_editor")
observe({
species_count <- length(preset()$species_ids)
updateSliderInput(
session,
"n_species",
max = species_count
)
})
# Compute the results according to the preset.
analysis <- reactive({
preset <- preset()
# Perform the analysis cached based on the preset's hash.
analysis <- withProgress(
message = "Analyzing genes",
value = 0.0,
{ # nolint
geposan::analyze(preset, function(progress) {
setProgress(progress)
})
}
)
analysis
})
min_n_species <- reactive(input$n_species)
# Rank the results.
ranking <- methods_server("methods", analysis, min_n_species)
# Add gene information to the results.
results <- reactive({
merge(
ranking(),
geposan::genes,
by.x = "gene",
by.y = "id",
sort = FALSE
)
})
# Apply the filters.
results_filtered <- filters_server("filters", results)
output$genes <- DT::renderDT({
columns <- c("rank", "gene", "name", "chromosome", method_ids, "score")
column_names <- c("", "Gene", "", "Chromosome", method_names, "Score")
dt <- DT::datatable(
results_filtered()[, ..columns],
rownames = FALSE,
colnames = column_names,
style = "bootstrap",
fillContainer = TRUE,
extensions = "Scroller",
options = list(
rowCallback = js_link,
columnDefs = list(list(visible = FALSE, targets = 2)),
deferRender = TRUE,
scrollY = 200,
scroller = TRUE
)
)
DT::formatPercentage(dt, c(method_ids, "score"), digits = 1)
})
output$copy <- renderUI({
results <- results_filtered()
gene_ids <- results[, gene]
names <- results[name != "", name]
genes_text <- paste(gene_ids, collapse = "\n")
names_text <- paste(names, collapse = "\n")
splitLayout(
cellWidths = "auto",
rclipboard::rclipButton(
"copy_ids_button",
"Copy gene IDs",
genes_text,
icon = icon("clipboard")
),
rclipboard::rclipButton(
"copy_names_button",
"Copy gene names",
names_text,
icon = icon("clipboard")
)
)
})
output$scatter <- plotly::renderPlotly({
results <- results_filtered()
gene_ids <- results[input$genes_rows_selected, gene]
genes <- genes[id %chin% gene_ids]
species <- species[id %chin% preset()$species_ids]
scatter_plot(results, species, genes)
})
output$assessment_synopsis <- renderText({
reference_gene_ids <- preset()$reference_gene_ids
included_reference_count <- results_filtered()[
gene %chin% reference_gene_ids,
.N
]
reference_results <- results()[gene %chin% reference_gene_ids]
total_reference_count <- nrow(reference_results)
if (total_reference_count > 0) {
mean_rank <- as.character(round(
reference_results[, mean(rank)],
digits = 1
))
min_rank <- as.character(reference_results[, min(rank)])
max_rank <- as.character(reference_results[, max(rank)])
} else {
mean_rank <- "Unknown"
min_rank <- "Unknown"
max_rank <- "Unknown"
}
sprintf(
"Included reference genes: %i/%i
\
Mean rank of reference genes: %s
\
First rank of reference genes: %s
\
Last rank of reference genes: %s",
included_reference_count,
total_reference_count,
mean_rank,
min_rank,
max_rank
)
})
output$rank_plot <- plotly::renderPlotly({
rank_plot(
results(),
preset()$reference_gene_ids,
results_filtered()[, max(rank)]
)
})
output$gost <- plotly::renderPlotly({
if (input$enable_gost) {
result <- gprofiler2::gost(
results_filtered()[, gene],
ordered_query = TRUE
)
gprofiler2::gostplot(
result,
capped = FALSE,
interactive = TRUE
)
} else {
NULL
}
})
}