library(data.table) library(DT) library(gprofiler2) library(plotly) library(rclipboard) library(shiny) source("init.R") source("rank_plot.R") source("scatter_plot.R") #' Java script function to replace gene IDs with Ensembl gene links. js_link <- JS("function(row, data) { let id = data[1]; var name = data[2]; if (!name) name = 'Unknown'; let url = `https://www.ensembl.org/Homo_sapiens/Gene/Summary?g=${id}`; $('td:eq(1)', row).html(`${name}`); }") server <- function(input, output) { #' Show the customized slider for setting the required number of species. output$n_species_slider <- renderUI({ sliderInput( "n_species", "Required number of species per gene", min = 0, max = if (input$species == "all") { nrow(species) } else { length(species_ids_replicative) }, step = 1, value = 10 ) }) #' This reactive expression applies all user defined filters as well as the #' desired ranking weights to the results. results <- reactive({ # Select the species preset. results <- if (input$species == "all") { results_all } else { results_replicative } # Compute scoring factors and the weighted score. total_weight <- 0.0 results[, score := 0.0] for (method in methods) { weight <- input[[method$id]] total_weight <- total_weight + weight column <- method$id weighted <- weight * results[, ..column] results[, score := score + weighted] } results[, score := score / total_weight] # Exclude genes with too few species. results <- results[n_species >= input$n_species] # Penalize missing species. if (input$penalize) { species_count <- if (input$species == "all") { nrow(species) } else { length(species_ids_replicative) } results <- results[, score := score * n_species / species_count] } # Apply the cut-off score. results <- results[score >= input$cutoff / 100] # Order the results based on their score. setorder(results, -score, na.last = TRUE) results[, rank := .I] }) output$rank_plot <- renderPlotly({ results <- results() rank_plot(results, genes[suggested | verified == TRUE, id]) }) output$genes <- renderDT({ method_ids <- sapply(methods, function(method) method$id) method_names <- sapply(methods, function(method) method$name) columns <- c("rank", "gene", "name", "chromosome", method_ids, "score") column_names <- c("", "Gene", "", "Chromosome", method_names, "Score") dt <- datatable( results()[, ..columns], rownames = FALSE, colnames = column_names, style = "bootstrap", extensions = "Scroller", options = list( rowCallback = js_link, columnDefs = list(list(visible = FALSE, targets = 2)), deferRender = TRUE, scrollY = 200, scroller = TRUE ) ) formatPercentage(dt, c(method_ids, "score"), digits = 1) }) output$synposis <- renderText({ results <- results() sprintf( "Found %i candidates including %i/%i verified and %i/%i suggested \ TPE-OLD genes.", results[, .N], results[verified == TRUE, .N], genes[verified == TRUE, .N], results[suggested == TRUE, .N], genes[suggested == TRUE, .N] ) }) output$copy <- renderUI({ results <- results() gene_ids <- results[, gene] names <- results[name != "", name] genes_text <- paste(gene_ids, collapse = "\n") names_text <- paste(names, collapse = "\n") splitLayout( rclipButton( "copy_ids_button", "Copy gene IDs", genes_text, icon = icon("clipboard"), width = "100%" ), rclipButton( "copy_names_button", "Copy gene names", names_text, icon = icon("clipboard"), width = "100%" ) ) }) output$scatter <- renderPlotly({ results <- results() gene_ids <- results[input$genes_rows_selected, gene] genes <- genes[id %chin% gene_ids] species <- if (input$species == "all") { species } else { species[replicative == TRUE] } scatter_plot(results, species, genes, distances) }) output$gost <- renderPlotly({ if (input$enable_gost) { result <- gost(results()[, gene], ordered_query = TRUE) gostplot(result, capped = FALSE, interactive = TRUE) } else { NULL } }) }