# Java script function to replace gene IDs with Ensembl gene links. js_link <- DT::JS("function(row, data) { let id = data[1]; var name = data[2]; if (!name) name = 'Unknown'; let url = `https://www.ensembl.org/Homo_sapiens/Gene/Summary?g=${id}`; $('td:eq(1)', row).html(`${name}`); }") server <- function(input, output, session) { preset <- preset_editor_server("preset_editor") # Show the customized slider for setting the required number of species. output$n_species_slider <- renderUI({ sliderInput( "n_species", "Required number of species per gene", min = 0, max = length(preset()$species_ids), step = 1, value = 10 ) }) # Compute the results according to the preset. analysis <- reactive({ preset <- preset() # Perform the analysis cached based on the preset's hash. results <- withProgress( message = "Analyzing genes", value = 0.0, { geposan::analyze(preset, function(progress) { setProgress(progress) }) } ) # Add all gene information to the results. results <- merge( results, genes, by.x = "gene", by.y = "id" ) # Count included species from the preset per gene. genes_n_species <- geposan::distances[ species %chin% preset$species_ids, .(n_species = .N), by = "gene" ] setkey(genes_n_species, gene) # Exclude genes with too few species. results[genes_n_species[gene, n_species] >= input$n_species] }) # Rank the results. results <- methods_server("methods", analysis) # Apply the cut-off score to the ranked results. results_filtered <- reactive({ results()[score >= input$cutoff / 100] }) output$genes <- DT::renderDT({ method_ids <- sapply(methods, function(method) method$id) method_names <- sapply(methods, function(method) method$name) columns <- c("rank", "gene", "name", "chromosome", method_ids, "score") column_names <- c("", "Gene", "", "Chromosome", method_names, "Score") dt <- DT::datatable( results_filtered()[, ..columns], rownames = FALSE, colnames = column_names, style = "bootstrap", fillContainer = TRUE, extensions = "Scroller", options = list( rowCallback = js_link, columnDefs = list(list(visible = FALSE, targets = 2)), deferRender = TRUE, scrollY = 200, scroller = TRUE ) ) DT::formatPercentage(dt, c(method_ids, "score"), digits = 1) }) output$copy <- renderUI({ results <- results_filtered() gene_ids <- results[, gene] names <- results[name != "", name] genes_text <- paste(gene_ids, collapse = "\n") names_text <- paste(names, collapse = "\n") splitLayout( cellWidths = "auto", rclipboard::rclipButton( "copy_ids_button", "Copy gene IDs", genes_text, icon = icon("clipboard") ), rclipboard::rclipButton( "copy_names_button", "Copy gene names", names_text, icon = icon("clipboard") ) ) }) output$scatter <- plotly::renderPlotly({ results <- results_filtered() gene_ids <- results[input$genes_rows_selected, gene] genes <- genes[id %chin% gene_ids] species <- species[id %chin% preset()$species_ids] scatter_plot(results, species, genes) }) output$assessment_synopsis <- renderText({ reference_gene_ids <- preset()$reference_gene_ids included_reference_count <- results_filtered()[ gene %chin% reference_gene_ids, .N ] reference_results <- results()[gene %chin% reference_gene_ids] total_reference_count <- nrow(reference_results) if (total_reference_count > 0) { mean_rank <- as.character(round( reference_results[, mean(rank)], digits = 1 )) min_rank <- as.character(reference_results[, min(rank)]) max_rank <- as.character(reference_results[, max(rank)]) } else { mean_rank <- "Unknown" min_rank <- "Unknown" max_rank <- "Unknown" } sprintf( "Included reference genes: %i/%i
\ Mean rank of reference genes: %s
\ First rank of reference genes: %s
\ Last rank of reference genes: %s", included_reference_count, total_reference_count, mean_rank, min_rank, max_rank ) }) output$rank_plot <- plotly::renderPlotly({ rank_plot( results(), preset()$reference_gene_ids, input$cutoff / 100 ) }) output$gost <- plotly::renderPlotly({ if (input$enable_gost) { result <- gprofiler2::gost( results_filtered()[, gene], ordered_query = TRUE ) gprofiler2::gostplot( result, capped = FALSE, interactive = TRUE ) } else { NULL } }) }