Add initial gene processing

This commit is contained in:
Elias Projahn 2021-08-25 15:01:18 +02:00
parent fd72b3426c
commit d3151957a3
3 changed files with 68 additions and 2 deletions

View file

@ -15,6 +15,7 @@ load_input <- function(path) {
species <- data.table(
id = character(),
group = character(),
label = character(),
median_distance = numeric()
)
@ -44,6 +45,7 @@ load_input <- function(path) {
# add it to the species table along other static data.
species <- rbindlist(list(species, data.table(
id = species_id,
group = original_species[id == species_id, group],
label = original_species[id == species_id, label],
median_distance = median(species_distances[, dist])
)))

51
process.R Normal file
View file

@ -0,0 +1,51 @@
library(data.table)
library(rlog)
#' Process genes screening for a likely TPE-OLD.
#'
#' The return value will be a table containing genes and data to take in
#' account when regarding them as TPE-OLD candidates.
#'
#' @param input Data from [`load_input()`].
process_input <- function(input) {
results <- data.table(gene = input$genes$id)
# Exclude species with naturally or artificially short chromosomes as well
# as non-replicatively aging species.
species_ids <- input$species[
median_distance >= 7500000 & group == "replicative",
id
]
gene_ids <- input$genes[, id]
gene_count <- length(gene_ids)
for (i in seq_along(gene_ids)) {
gene_id <- gene_ids[i]
log_info(sprintf("Processing gene %i/%i (%i)", i, gene_count, gene_id))
distances <- input$distances[
species %chin% species_ids & gene == gene_id,
.(species, distance)
]
if (distances[, .N] < 12) {
next
}
clusters <- hclust(dist(distances[, distance]))
clusters_cut <- cutree(clusters, h = 1000000)
cluster <- distances[which(clusters_cut == 1)]
results[
gene == gene_id,
`:=`(
cluster_length = cluster[, .N],
cluster_mean = mean(cluster[, distance]),
cluster_species = list(cluster[, species])
)
]
}
results
}

View file

@ -3,22 +3,35 @@ library(DT)
library(shiny)
source("input.R")
source("process.R")
source("scatter_plot.R")
source("util.R")
data <- run_cached("input", load_input, "input")
results <- run_cached("results", process_input, data)
server <- function(input, output) {
filtered <- results[cluster_length >= 10]
merged <- merge.data.table(filtered, data$genes, by.x = "gene", by.y = "id")
setorder(merged, -cluster_length)
output$genes <- renderDT({
datatable(
data$genes[, c("name", "chromosome")],
merged[, .(.I, name, chromosome, cluster_length, cluster_mean)],
rownames = FALSE,
colnames = c(
"Rank",
"Gene",
"Chromosome",
"Cluster length",
"Cluster mean"
),
style = "bootstrap"
)
})
output$scatter <- renderPlot({
gene_ids <- data$genes[input$genes_rows_selected, id]
gene_ids <- merged[input$genes_rows_selected, gene]
scatter_plot(gene_ids, data)
})
}