mirror of
https://github.com/johrpan/geposanui.git
synced 2025-10-26 11:17:24 +01:00
clusteriness: Don't penalize missing values yet
This commit is contained in:
parent
b122f2e240
commit
cd63486f0a
1 changed files with 7 additions and 7 deletions
14
clustering.R
14
clustering.R
|
|
@ -5,12 +5,13 @@ library(data.table)
|
||||||
#' This function will cluster the data using `hclust` and `cutree` (with the
|
#' This function will cluster the data using `hclust` and `cutree` (with the
|
||||||
#' specified height). Every cluster with at least two members qualifies for
|
#' specified height). Every cluster with at least two members qualifies for
|
||||||
#' further analysis. Clusters are then ranked based on their size in relation
|
#' further analysis. Clusters are then ranked based on their size in relation
|
||||||
#' to the total number of possible values (`n`). The return value is a final
|
#' to the number of values. The return value is a final score between zero and
|
||||||
#' score between zero and one. Lower ranking clusters contribute less to this
|
#' one. Lower ranking clusters contribute less to this score.
|
||||||
#' score.
|
clusteriness <- function(data, height = 1000000) {
|
||||||
clusteriness <- function(data, n, height = 1000000) {
|
n <- length(data)
|
||||||
|
|
||||||
# Return a score of 0.0 if there is just one or no value at all.
|
# Return a score of 0.0 if there is just one or no value at all.
|
||||||
if (length(data) < 2) {
|
if (n < 2) {
|
||||||
return(0.0)
|
return(0.0)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
@ -48,7 +49,6 @@ clusteriness <- function(data, n, height = 1000000) {
|
||||||
#' @param gene_ids Genes to include in the computation.
|
#' @param gene_ids Genes to include in the computation.
|
||||||
process_clustering <- function(distances, species_ids, gene_ids) {
|
process_clustering <- function(distances, species_ids, gene_ids) {
|
||||||
results <- data.table(gene = gene_ids)
|
results <- data.table(gene = gene_ids)
|
||||||
species_count <- length(species)
|
|
||||||
|
|
||||||
# Prefilter the input data by species.
|
# Prefilter the input data by species.
|
||||||
distances <- distances[species %chin% species_ids]
|
distances <- distances[species %chin% species_ids]
|
||||||
|
|
@ -58,7 +58,7 @@ process_clustering <- function(distances, species_ids, gene_ids) {
|
||||||
|
|
||||||
#' Perform the cluster analysis for one gene.
|
#' Perform the cluster analysis for one gene.
|
||||||
compute <- function(gene_id) {
|
compute <- function(gene_id) {
|
||||||
clusteriness(distances[gene_id, distance], species_count)
|
clusteriness(distances[gene_id, distance])
|
||||||
}
|
}
|
||||||
|
|
||||||
results[, clusteriness := compute(gene), by = 1:nrow(results)]
|
results[, clusteriness := compute(gene), by = 1:nrow(results)]
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue