Add new correlation method

This commit is contained in:
Elias Projahn 2021-09-18 23:10:52 +02:00
parent 1cea6c3631
commit 9d6b2e4d50
4 changed files with 176 additions and 63 deletions

View file

@ -1,21 +1,30 @@
library(data.table)
library(rlog)
#' Process genes screening for a likely TPE-OLD.
#' Process genes clustering their distance to telomeres.
#'
#' The return value will be a table containing genes and data to take in
#' account when regarding them as TPE-OLD candidates.
#' The return value will be a data.table with the following columns:
#'
#' - `gene` Gene ID of the processed gene.
#' - `cluster_length` Length of the largest cluster.
#' - `cluster_mean` Mean value of the largest cluster.
#' - `cluster_species` List of species contributing to the largest cluster.
#'
#' @param distances Gene distance data to use.
#' @param species_ids IDs of species to include in the analysis.
#' @param gene_ids Genes to include in the computation.
process_input <- function(distances, species_ids, gene_ids) {
process_clustering <- function(distances, species_ids, gene_ids) {
results <- data.table(gene = gene_ids)
gene_count <- length(gene_ids)
for (i in seq_along(gene_ids)) {
for (i in 1:gene_count) {
gene_id <- gene_ids[i]
log_info(sprintf("Processing gene %i/%i (%s)", i, gene_count, gene_id))
log_info(sprintf(
"[%3i%%] Processing gene \"%s\"",
round(i / gene_count * 100),
gene_id
))
data <- distances[
species %chin% species_ids & gene == gene_id,

61
correlation.R Normal file
View file

@ -0,0 +1,61 @@
library(data.table)
library(rlog)
#' Compute the mean correlation coefficient comparing gene distances with a set
#' of reference genes.
#'
#' The result will be a data.table with the following columns:
#'
#' - `gene` Gene ID of the processed gene.
#' - `r_mean` Mean correlation coefficient.
#'
#' @param distances Distance data to use.
#' @param species_ids Species, whose data should be included.
#' @param gene_ids Genes to process.
#' @param reference_gene_ids Genes to compare to.
process_correlation <- function(distances, species_ids, gene_ids,
reference_gene_ids) {
log_info("Processing genes for correlation")
results <- data.table(gene = gene_ids)
gene_count <- length(gene_ids)
reference_count <- length(reference_gene_ids)
# Prefilter distances by species.
distances <- distances[species %chin% species_ids]
for (i in 1:gene_count) {
gene_id <- gene_ids[i]
log_info(sprintf(
"[%3i%%] Processing gene \"%s\"",
round(i / gene_count * 100),
gene_id
))
gene_distances <- distances[gene == gene_id]
if (nrow(gene_distances) < 12) {
next
}
#' Buffer for the sum of correlation coefficients.
r_sum <- 0
# Correlate with all reference genes but not with the gene itself.
for (reference_gene_id in
reference_gene_ids[reference_gene_ids != gene_id]) {
data <- merge(
gene_distances,
distances[gene == reference_gene_id],
by = "species"
)
r_sum <- r_sum + abs(cor(data[, distance.x], data[, distance.y]))
}
results[gene == gene_id, r_mean := r_sum / reference_count]
}
results
}

97
init.R Normal file
View file

@ -0,0 +1,97 @@
source("clustering.R")
source("correlation.R")
source("input.R")
source("util.R")
# Load input data
species <- run_cached("input/species", retrieve_species)
genes <- run_cached("input/genes", retrieve_genes)
distances <- run_cached(
"input/distances",
retrieve_distances,
species[, id],
genes[, id]
)
# Load processed data
all_species <- species[, id]
replicative_species <- species[replicative == TRUE, id]
all_genes <- genes[, id]
tpe_old_genes <- genes[suggested | verified == TRUE, id]
clustering_all <- run_cached(
"all_species/clustering",
process_clustering,
distances,
all_species,
all_genes
)
clustering_replicative <- run_cached(
"replicative_species/clustering",
process_clustering,
distances,
replicative_species,
all_genes
)
correlation_all <- run_cached(
"all_species/correlation",
process_correlation,
distances,
all_species,
all_genes,
tpe_old_genes
)
correlation_replicative <- run_cached(
"replicative_species/correlation",
process_correlation,
distances,
replicative_species,
all_genes,
tpe_old_genes
)
# Merge processed data as well as gene information.
results_all <- merge(
genes,
clustering_all,
by.x = "id",
by.y = "gene"
)
results_all <- merge(
results_all,
correlation_all,
by.x = "id",
by.y = "gene"
)
results_replicative <- merge(
genes,
clustering_replicative,
by.x = "id",
by.y = "gene"
)
results_replicative <- merge(
results_replicative,
correlation_replicative,
by.x = "id",
by.y = "gene"
)
# Rename `id` columns to `gene`.
setnames(results_all, "id", "gene")
setnames(results_replicative, "id", "gene")
# Order results by cluster length descendingly as a start.
setorder(results_all, -cluster_length)
setorder(results_replicative, -cluster_length)

View file

@ -2,61 +2,8 @@ library(data.table)
library(DT)
library(shiny)
source("input.R")
source("process.R")
source("init.R")
source("scatter_plot.R")
source("util.R")
# Load input data
species <- run_cached("species", retrieve_species)
genes <- run_cached("genes", retrieve_genes)
distances <- run_cached(
"distances",
retrieve_distances,
species[, id],
genes[, id]
)
#' Results computed for all species.
results_all <- run_cached(
"results_all",
process_input,
distances,
species[, id],
genes[, id]
)
#' Results computed for known replicatively aging species.
results_replicative <- run_cached(
"results_replicative",
process_input,
distances,
species[replicative == TRUE, id],
genes[, id]
)
# Add gene information to results for display.
results_all <- merge(
results_all,
genes,
by.x = "gene",
by.y = "id"
)
results_replicative <- merge(
results_replicative,
genes,
by.x = "gene",
by.y = "id"
)
# Order results by cluster length descendingly.
# TODO: Once other methods have been added, this has to be dynamic.
setorder(results_all, -cluster_length)
setorder(results_replicative, -cluster_length)
server <- function(input, output) {
#' This expression applies all user defined filters to the available
@ -77,14 +24,13 @@ server <- function(input, output) {
output$genes <- renderDT({
datatable(
results()[, .(.I, name, chromosome, cluster_length, cluster_mean)],
results()[, .(.I, name, cluster_length, r_mean)],
rownames = FALSE,
colnames = c(
"Rank",
"Gene",
"Chromosome",
"Cluster length",
"Cluster mean"
"Correlation"
),
style = "bootstrap"
)