mirror of
https://github.com/johrpan/geposanui.git
synced 2025-10-26 11:17:24 +01:00
Add new correlation method
This commit is contained in:
parent
1cea6c3631
commit
9d6b2e4d50
4 changed files with 176 additions and 63 deletions
|
|
@ -1,21 +1,30 @@
|
||||||
library(data.table)
|
library(data.table)
|
||||||
library(rlog)
|
library(rlog)
|
||||||
|
|
||||||
#' Process genes screening for a likely TPE-OLD.
|
#' Process genes clustering their distance to telomeres.
|
||||||
#'
|
#'
|
||||||
#' The return value will be a table containing genes and data to take in
|
#' The return value will be a data.table with the following columns:
|
||||||
#' account when regarding them as TPE-OLD candidates.
|
#'
|
||||||
|
#' - `gene` Gene ID of the processed gene.
|
||||||
|
#' - `cluster_length` Length of the largest cluster.
|
||||||
|
#' - `cluster_mean` Mean value of the largest cluster.
|
||||||
|
#' - `cluster_species` List of species contributing to the largest cluster.
|
||||||
#'
|
#'
|
||||||
#' @param distances Gene distance data to use.
|
#' @param distances Gene distance data to use.
|
||||||
#' @param species_ids IDs of species to include in the analysis.
|
#' @param species_ids IDs of species to include in the analysis.
|
||||||
#' @param gene_ids Genes to include in the computation.
|
#' @param gene_ids Genes to include in the computation.
|
||||||
process_input <- function(distances, species_ids, gene_ids) {
|
process_clustering <- function(distances, species_ids, gene_ids) {
|
||||||
results <- data.table(gene = gene_ids)
|
results <- data.table(gene = gene_ids)
|
||||||
gene_count <- length(gene_ids)
|
gene_count <- length(gene_ids)
|
||||||
|
|
||||||
for (i in seq_along(gene_ids)) {
|
for (i in 1:gene_count) {
|
||||||
gene_id <- gene_ids[i]
|
gene_id <- gene_ids[i]
|
||||||
log_info(sprintf("Processing gene %i/%i (%s)", i, gene_count, gene_id))
|
|
||||||
|
log_info(sprintf(
|
||||||
|
"[%3i%%] Processing gene \"%s\"",
|
||||||
|
round(i / gene_count * 100),
|
||||||
|
gene_id
|
||||||
|
))
|
||||||
|
|
||||||
data <- distances[
|
data <- distances[
|
||||||
species %chin% species_ids & gene == gene_id,
|
species %chin% species_ids & gene == gene_id,
|
||||||
61
correlation.R
Normal file
61
correlation.R
Normal file
|
|
@ -0,0 +1,61 @@
|
||||||
|
library(data.table)
|
||||||
|
library(rlog)
|
||||||
|
|
||||||
|
#' Compute the mean correlation coefficient comparing gene distances with a set
|
||||||
|
#' of reference genes.
|
||||||
|
#'
|
||||||
|
#' The result will be a data.table with the following columns:
|
||||||
|
#'
|
||||||
|
#' - `gene` Gene ID of the processed gene.
|
||||||
|
#' - `r_mean` Mean correlation coefficient.
|
||||||
|
#'
|
||||||
|
#' @param distances Distance data to use.
|
||||||
|
#' @param species_ids Species, whose data should be included.
|
||||||
|
#' @param gene_ids Genes to process.
|
||||||
|
#' @param reference_gene_ids Genes to compare to.
|
||||||
|
process_correlation <- function(distances, species_ids, gene_ids,
|
||||||
|
reference_gene_ids) {
|
||||||
|
log_info("Processing genes for correlation")
|
||||||
|
|
||||||
|
results <- data.table(gene = gene_ids)
|
||||||
|
gene_count <- length(gene_ids)
|
||||||
|
reference_count <- length(reference_gene_ids)
|
||||||
|
|
||||||
|
# Prefilter distances by species.
|
||||||
|
distances <- distances[species %chin% species_ids]
|
||||||
|
|
||||||
|
for (i in 1:gene_count) {
|
||||||
|
gene_id <- gene_ids[i]
|
||||||
|
|
||||||
|
log_info(sprintf(
|
||||||
|
"[%3i%%] Processing gene \"%s\"",
|
||||||
|
round(i / gene_count * 100),
|
||||||
|
gene_id
|
||||||
|
))
|
||||||
|
|
||||||
|
gene_distances <- distances[gene == gene_id]
|
||||||
|
|
||||||
|
if (nrow(gene_distances) < 12) {
|
||||||
|
next
|
||||||
|
}
|
||||||
|
|
||||||
|
#' Buffer for the sum of correlation coefficients.
|
||||||
|
r_sum <- 0
|
||||||
|
|
||||||
|
# Correlate with all reference genes but not with the gene itself.
|
||||||
|
for (reference_gene_id in
|
||||||
|
reference_gene_ids[reference_gene_ids != gene_id]) {
|
||||||
|
data <- merge(
|
||||||
|
gene_distances,
|
||||||
|
distances[gene == reference_gene_id],
|
||||||
|
by = "species"
|
||||||
|
)
|
||||||
|
|
||||||
|
r_sum <- r_sum + abs(cor(data[, distance.x], data[, distance.y]))
|
||||||
|
}
|
||||||
|
|
||||||
|
results[gene == gene_id, r_mean := r_sum / reference_count]
|
||||||
|
}
|
||||||
|
|
||||||
|
results
|
||||||
|
}
|
||||||
97
init.R
Normal file
97
init.R
Normal file
|
|
@ -0,0 +1,97 @@
|
||||||
|
source("clustering.R")
|
||||||
|
source("correlation.R")
|
||||||
|
source("input.R")
|
||||||
|
source("util.R")
|
||||||
|
|
||||||
|
# Load input data
|
||||||
|
|
||||||
|
species <- run_cached("input/species", retrieve_species)
|
||||||
|
genes <- run_cached("input/genes", retrieve_genes)
|
||||||
|
|
||||||
|
distances <- run_cached(
|
||||||
|
"input/distances",
|
||||||
|
retrieve_distances,
|
||||||
|
species[, id],
|
||||||
|
genes[, id]
|
||||||
|
)
|
||||||
|
|
||||||
|
# Load processed data
|
||||||
|
|
||||||
|
all_species <- species[, id]
|
||||||
|
replicative_species <- species[replicative == TRUE, id]
|
||||||
|
all_genes <- genes[, id]
|
||||||
|
tpe_old_genes <- genes[suggested | verified == TRUE, id]
|
||||||
|
|
||||||
|
clustering_all <- run_cached(
|
||||||
|
"all_species/clustering",
|
||||||
|
process_clustering,
|
||||||
|
distances,
|
||||||
|
all_species,
|
||||||
|
all_genes
|
||||||
|
)
|
||||||
|
|
||||||
|
clustering_replicative <- run_cached(
|
||||||
|
"replicative_species/clustering",
|
||||||
|
process_clustering,
|
||||||
|
distances,
|
||||||
|
replicative_species,
|
||||||
|
all_genes
|
||||||
|
)
|
||||||
|
|
||||||
|
correlation_all <- run_cached(
|
||||||
|
"all_species/correlation",
|
||||||
|
process_correlation,
|
||||||
|
distances,
|
||||||
|
all_species,
|
||||||
|
all_genes,
|
||||||
|
tpe_old_genes
|
||||||
|
)
|
||||||
|
|
||||||
|
correlation_replicative <- run_cached(
|
||||||
|
"replicative_species/correlation",
|
||||||
|
process_correlation,
|
||||||
|
distances,
|
||||||
|
replicative_species,
|
||||||
|
all_genes,
|
||||||
|
tpe_old_genes
|
||||||
|
)
|
||||||
|
|
||||||
|
# Merge processed data as well as gene information.
|
||||||
|
|
||||||
|
results_all <- merge(
|
||||||
|
genes,
|
||||||
|
clustering_all,
|
||||||
|
by.x = "id",
|
||||||
|
by.y = "gene"
|
||||||
|
)
|
||||||
|
|
||||||
|
results_all <- merge(
|
||||||
|
results_all,
|
||||||
|
correlation_all,
|
||||||
|
by.x = "id",
|
||||||
|
by.y = "gene"
|
||||||
|
)
|
||||||
|
|
||||||
|
results_replicative <- merge(
|
||||||
|
genes,
|
||||||
|
clustering_replicative,
|
||||||
|
by.x = "id",
|
||||||
|
by.y = "gene"
|
||||||
|
)
|
||||||
|
|
||||||
|
results_replicative <- merge(
|
||||||
|
results_replicative,
|
||||||
|
correlation_replicative,
|
||||||
|
by.x = "id",
|
||||||
|
by.y = "gene"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Rename `id` columns to `gene`.
|
||||||
|
|
||||||
|
setnames(results_all, "id", "gene")
|
||||||
|
setnames(results_replicative, "id", "gene")
|
||||||
|
|
||||||
|
# Order results by cluster length descendingly as a start.
|
||||||
|
|
||||||
|
setorder(results_all, -cluster_length)
|
||||||
|
setorder(results_replicative, -cluster_length)
|
||||||
60
server.R
60
server.R
|
|
@ -2,61 +2,8 @@ library(data.table)
|
||||||
library(DT)
|
library(DT)
|
||||||
library(shiny)
|
library(shiny)
|
||||||
|
|
||||||
source("input.R")
|
source("init.R")
|
||||||
source("process.R")
|
|
||||||
source("scatter_plot.R")
|
source("scatter_plot.R")
|
||||||
source("util.R")
|
|
||||||
|
|
||||||
# Load input data
|
|
||||||
|
|
||||||
species <- run_cached("species", retrieve_species)
|
|
||||||
genes <- run_cached("genes", retrieve_genes)
|
|
||||||
|
|
||||||
distances <- run_cached(
|
|
||||||
"distances",
|
|
||||||
retrieve_distances,
|
|
||||||
species[, id],
|
|
||||||
genes[, id]
|
|
||||||
)
|
|
||||||
|
|
||||||
#' Results computed for all species.
|
|
||||||
results_all <- run_cached(
|
|
||||||
"results_all",
|
|
||||||
process_input,
|
|
||||||
distances,
|
|
||||||
species[, id],
|
|
||||||
genes[, id]
|
|
||||||
)
|
|
||||||
|
|
||||||
#' Results computed for known replicatively aging species.
|
|
||||||
results_replicative <- run_cached(
|
|
||||||
"results_replicative",
|
|
||||||
process_input,
|
|
||||||
distances,
|
|
||||||
species[replicative == TRUE, id],
|
|
||||||
genes[, id]
|
|
||||||
)
|
|
||||||
|
|
||||||
# Add gene information to results for display.
|
|
||||||
|
|
||||||
results_all <- merge(
|
|
||||||
results_all,
|
|
||||||
genes,
|
|
||||||
by.x = "gene",
|
|
||||||
by.y = "id"
|
|
||||||
)
|
|
||||||
|
|
||||||
results_replicative <- merge(
|
|
||||||
results_replicative,
|
|
||||||
genes,
|
|
||||||
by.x = "gene",
|
|
||||||
by.y = "id"
|
|
||||||
)
|
|
||||||
|
|
||||||
# Order results by cluster length descendingly.
|
|
||||||
# TODO: Once other methods have been added, this has to be dynamic.
|
|
||||||
setorder(results_all, -cluster_length)
|
|
||||||
setorder(results_replicative, -cluster_length)
|
|
||||||
|
|
||||||
server <- function(input, output) {
|
server <- function(input, output) {
|
||||||
#' This expression applies all user defined filters to the available
|
#' This expression applies all user defined filters to the available
|
||||||
|
|
@ -77,14 +24,13 @@ server <- function(input, output) {
|
||||||
|
|
||||||
output$genes <- renderDT({
|
output$genes <- renderDT({
|
||||||
datatable(
|
datatable(
|
||||||
results()[, .(.I, name, chromosome, cluster_length, cluster_mean)],
|
results()[, .(.I, name, cluster_length, r_mean)],
|
||||||
rownames = FALSE,
|
rownames = FALSE,
|
||||||
colnames = c(
|
colnames = c(
|
||||||
"Rank",
|
"Rank",
|
||||||
"Gene",
|
"Gene",
|
||||||
"Chromosome",
|
|
||||||
"Cluster length",
|
"Cluster length",
|
||||||
"Cluster mean"
|
"Correlation"
|
||||||
),
|
),
|
||||||
style = "bootstrap"
|
style = "bootstrap"
|
||||||
)
|
)
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue