mirror of
https://github.com/johrpan/geposanui.git
synced 2025-10-26 11:17:24 +01:00
Add new correlation method
This commit is contained in:
parent
1cea6c3631
commit
9d6b2e4d50
4 changed files with 176 additions and 63 deletions
60
server.R
60
server.R
|
|
@ -2,61 +2,8 @@ library(data.table)
|
|||
library(DT)
|
||||
library(shiny)
|
||||
|
||||
source("input.R")
|
||||
source("process.R")
|
||||
source("init.R")
|
||||
source("scatter_plot.R")
|
||||
source("util.R")
|
||||
|
||||
# Load input data
|
||||
|
||||
species <- run_cached("species", retrieve_species)
|
||||
genes <- run_cached("genes", retrieve_genes)
|
||||
|
||||
distances <- run_cached(
|
||||
"distances",
|
||||
retrieve_distances,
|
||||
species[, id],
|
||||
genes[, id]
|
||||
)
|
||||
|
||||
#' Results computed for all species.
|
||||
results_all <- run_cached(
|
||||
"results_all",
|
||||
process_input,
|
||||
distances,
|
||||
species[, id],
|
||||
genes[, id]
|
||||
)
|
||||
|
||||
#' Results computed for known replicatively aging species.
|
||||
results_replicative <- run_cached(
|
||||
"results_replicative",
|
||||
process_input,
|
||||
distances,
|
||||
species[replicative == TRUE, id],
|
||||
genes[, id]
|
||||
)
|
||||
|
||||
# Add gene information to results for display.
|
||||
|
||||
results_all <- merge(
|
||||
results_all,
|
||||
genes,
|
||||
by.x = "gene",
|
||||
by.y = "id"
|
||||
)
|
||||
|
||||
results_replicative <- merge(
|
||||
results_replicative,
|
||||
genes,
|
||||
by.x = "gene",
|
||||
by.y = "id"
|
||||
)
|
||||
|
||||
# Order results by cluster length descendingly.
|
||||
# TODO: Once other methods have been added, this has to be dynamic.
|
||||
setorder(results_all, -cluster_length)
|
||||
setorder(results_replicative, -cluster_length)
|
||||
|
||||
server <- function(input, output) {
|
||||
#' This expression applies all user defined filters to the available
|
||||
|
|
@ -77,14 +24,13 @@ server <- function(input, output) {
|
|||
|
||||
output$genes <- renderDT({
|
||||
datatable(
|
||||
results()[, .(.I, name, chromosome, cluster_length, cluster_mean)],
|
||||
results()[, .(.I, name, cluster_length, r_mean)],
|
||||
rownames = FALSE,
|
||||
colnames = c(
|
||||
"Rank",
|
||||
"Gene",
|
||||
"Chromosome",
|
||||
"Cluster length",
|
||||
"Cluster mean"
|
||||
"Correlation"
|
||||
),
|
||||
style = "bootstrap"
|
||||
)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue