Add new correlation method

This commit is contained in:
Elias Projahn 2021-09-18 23:10:52 +02:00
parent 1cea6c3631
commit 9d6b2e4d50
4 changed files with 176 additions and 63 deletions

View file

@ -2,61 +2,8 @@ library(data.table)
library(DT)
library(shiny)
source("input.R")
source("process.R")
source("init.R")
source("scatter_plot.R")
source("util.R")
# Load input data
species <- run_cached("species", retrieve_species)
genes <- run_cached("genes", retrieve_genes)
distances <- run_cached(
"distances",
retrieve_distances,
species[, id],
genes[, id]
)
#' Results computed for all species.
results_all <- run_cached(
"results_all",
process_input,
distances,
species[, id],
genes[, id]
)
#' Results computed for known replicatively aging species.
results_replicative <- run_cached(
"results_replicative",
process_input,
distances,
species[replicative == TRUE, id],
genes[, id]
)
# Add gene information to results for display.
results_all <- merge(
results_all,
genes,
by.x = "gene",
by.y = "id"
)
results_replicative <- merge(
results_replicative,
genes,
by.x = "gene",
by.y = "id"
)
# Order results by cluster length descendingly.
# TODO: Once other methods have been added, this has to be dynamic.
setorder(results_all, -cluster_length)
setorder(results_replicative, -cluster_length)
server <- function(input, output) {
#' This expression applies all user defined filters to the available
@ -77,14 +24,13 @@ server <- function(input, output) {
output$genes <- renderDT({
datatable(
results()[, .(.I, name, chromosome, cluster_length, cluster_mean)],
results()[, .(.I, name, cluster_length, r_mean)],
rownames = FALSE,
colnames = c(
"Rank",
"Gene",
"Chromosome",
"Cluster length",
"Cluster mean"
"Correlation"
),
style = "bootstrap"
)