mirror of
https://github.com/johrpan/geposanui.git
synced 2025-10-27 03:37:25 +01:00
Add new correlation method
This commit is contained in:
parent
1cea6c3631
commit
9d6b2e4d50
4 changed files with 176 additions and 63 deletions
51
process.R
51
process.R
|
|
@ -1,51 +0,0 @@
|
|||
library(data.table)
|
||||
library(rlog)
|
||||
|
||||
#' Process genes screening for a likely TPE-OLD.
|
||||
#'
|
||||
#' The return value will be a table containing genes and data to take in
|
||||
#' account when regarding them as TPE-OLD candidates.
|
||||
#'
|
||||
#' @param distances Gene distance data to use.
|
||||
#' @param species_ids IDs of species to include in the analysis.
|
||||
#' @param gene_ids Genes to include in the computation.
|
||||
process_input <- function(distances, species_ids, gene_ids) {
|
||||
results <- data.table(gene = gene_ids)
|
||||
gene_count <- length(gene_ids)
|
||||
|
||||
for (i in seq_along(gene_ids)) {
|
||||
gene_id <- gene_ids[i]
|
||||
log_info(sprintf("Processing gene %i/%i (%s)", i, gene_count, gene_id))
|
||||
|
||||
data <- distances[
|
||||
species %chin% species_ids & gene == gene_id,
|
||||
.(species, distance)
|
||||
]
|
||||
|
||||
if (data[, .N] < 12) {
|
||||
next
|
||||
}
|
||||
|
||||
clusters <- hclust(dist(data[, distance]))
|
||||
clusters_cut <- cutree(clusters, h = 1000000)
|
||||
|
||||
# Find the largest cluster
|
||||
cluster_indices <- unique(clusters_cut)
|
||||
cluster_index <- cluster_indices[
|
||||
which.max(tabulate(match(clusters_cut, cluster_indices)))
|
||||
]
|
||||
|
||||
cluster <- data[which(clusters_cut == cluster_index)]
|
||||
|
||||
results[
|
||||
gene == gene_id,
|
||||
`:=`(
|
||||
cluster_length = cluster[, .N],
|
||||
cluster_mean = mean(cluster[, distance]),
|
||||
cluster_species = list(cluster[, species])
|
||||
)
|
||||
]
|
||||
}
|
||||
|
||||
results
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue