mirror of
https://github.com/johrpan/geposanui.git
synced 2025-10-26 19:27:24 +01:00
Add new clusteriness score
This commit is contained in:
parent
ba7c624705
commit
91c15045cf
5 changed files with 43 additions and 67 deletions
48
clustering.R
48
clustering.R
|
|
@ -2,6 +2,37 @@ library(data.table)
|
|||
library(progress)
|
||||
library(rlog)
|
||||
|
||||
#' Perform a cluster analysis.
|
||||
#'
|
||||
#' This function will cluster the data using `hclust` and `cutree` (with the
|
||||
#' specified height). Every cluster with at least two members qualifies for
|
||||
#' further analysis. Clusters are then ranked based on their size in relation
|
||||
#' to the total number of values. The return value is a final score between
|
||||
#' zero and one. Lower ranking clusters contribute less to this score.
|
||||
clusteriness <- function(data, height = 1000000) {
|
||||
# Cluster the data and compute the cluster sizes.
|
||||
|
||||
tree <- hclust(dist(data))
|
||||
clusters <- cutree(tree, h = height)
|
||||
cluster_sizes <- sort(tabulate(clusters), decreasing = TRUE)
|
||||
|
||||
# Compute the "cluteriness" score.
|
||||
|
||||
score <- 0.0
|
||||
n <- length(data)
|
||||
|
||||
for (i in seq_along(cluster_sizes)) {
|
||||
cluster_size <- cluster_sizes[i]
|
||||
|
||||
if (cluster_size >= 2) {
|
||||
cluster_score <- cluster_size / n
|
||||
score <- score + cluster_score / i
|
||||
}
|
||||
}
|
||||
|
||||
score
|
||||
}
|
||||
|
||||
#' Process genes clustering their distance to telomeres.
|
||||
#'
|
||||
#' The return value will be a data.table with the following columns:
|
||||
|
|
@ -43,24 +74,11 @@ process_clustering <- function(distances, species_ids, gene_ids) {
|
|||
next
|
||||
}
|
||||
|
||||
clusters <- hclust(dist(data[, distance]))
|
||||
clusters_cut <- cutree(clusters, h = 1000000)
|
||||
|
||||
# Find the largest cluster
|
||||
cluster_indices <- unique(clusters_cut)
|
||||
cluster_index <- cluster_indices[
|
||||
which.max(tabulate(match(clusters_cut, cluster_indices)))
|
||||
]
|
||||
|
||||
cluster <- data[which(clusters_cut == cluster_index)]
|
||||
score <- clusteriness(data[, distance])
|
||||
|
||||
results[
|
||||
gene == gene_id,
|
||||
`:=`(
|
||||
cluster_length = cluster[, .N],
|
||||
cluster_mean = mean(cluster[, distance]),
|
||||
cluster_species = list(cluster[, species])
|
||||
)
|
||||
clusteriness := score
|
||||
]
|
||||
}
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue