data: Migrate to tidyverse

This commit is contained in:
Elias Projahn 2021-06-21 13:03:26 +02:00
parent cbc444f20c
commit 914673c79c

69
data.R
View file

@ -1,6 +1,6 @@
library(data.table)
source("species.R")
library(dplyr)
library(readr)
library(tibble)
#' Load and preprocess input data from `path`.
#'
@ -13,7 +13,7 @@ load_data_cached <- function(path) {
if (!file.exists(cache_file)) {
# If the cache file doesn't exist, we have to do the computation.
data <- load_data("input")
data <- load_data(path)
# The results are cached for the next run.
saveRDS(data, cache_file)
@ -25,52 +25,61 @@ load_data_cached <- function(path) {
}
}
#' Merge genome data from files in `path` into `data.table`s.
#' Merge genome data from files in `path` into `tibble`s.
#'
#' The result will be a list with two items:
#' The result will be a list with two named elements:
#' - `genes` will be a table with one row per unique `geneid` and multiple
#' columns per species containing the data of interest.
#' - `species` will contain information that is useful to be accessed by
#' species.
#' - `species` will contain additional information on each species.
#'
#' @seealso [load_data_cached()]
load_data <- function(path) {
# The resulting table for information by species.
species <- read_csv(paste(path, "species.csv", sep = "/"))
# The resulting table for information by gene. For each species, columns
# will be appended.
genes_table <- data.table(geneid = integer())
# The resulting table for information by species. This will result in a
# warning, because all median_distance values will be filled with `NA`
# (correctly).
species_table <- data.table(species, median_distance = numeric())
genes <- tibble(geneid = integer())
# Each file will contain data on one species.
file_names <- list.files(path, "*_raw.txt")
# Table containing additional columns to be added to the species table.
species_computed <- tibble(
id = character(),
median_distance = numeric()
)
for (file_name in file_names) {
species_id <- strsplit(file_name, split = "_")[[1]][1]
genes_table_for_species <- fread(paste(path, file_name, sep = "/"))
genes_for_species <- read_tsv(paste(path, file_name, sep = "/"))
# Fill in the new column of the species table (`median_distance`).
species_table[
id == species_id,
median_distance := median(genes_table_for_species[, dist])
]
# Compute the median distance across all genes of this species.
median_distance <- genes_for_species %>%
select(dist) %>%
summarise(median_distance = median(dist)) %>%
pull(median_distance)
# Cache the values to be added to the species table.
species_computed <- species_computed %>% add_row(
id = species_id,
median_distance = median_distance,
)
# Column names have to be unique for each species.
colnames(genes_table_for_species)[c(2, 3, 4)] <- c(
paste(species_id, c("dist", "name", "chromosome"), sep = "_")
genes_for_species <- rename_with(
genes_for_species,
~ paste(species_id, .x, sep = "_"),
c(dist, name, chromosome)
)
# Add new genes as rows as well as new columns for this species.
genes_table <- merge(
genes_table,
genes_table_for_species,
all = TRUE
)
genes <- full_join(genes, genes_for_species)
}
species <- left_join(species, species_computed)
list(
genes = genes_table,
species = species_table
genes = genes,
species = species
)
}