Add slider to set required number of species

This commit is contained in:
Elias Projahn 2021-10-11 11:08:50 +02:00
parent 48aa46c2c4
commit 4222a08b87
3 changed files with 42 additions and 6 deletions

18
init.R
View file

@ -79,6 +79,13 @@ neural_replicative <- run_cached(
results_all <- merge(
genes,
distances[, .(n_species = .N), by = "gene"],
by.x = "id",
by.y = "gene"
)
results_all <- merge(
results_all,
clustering_all,
by.x = "id",
by.y = "gene"
@ -100,6 +107,17 @@ results_all <- merge(
results_replicative <- merge(
genes,
distances[
species %chin% species_ids_replicative,
.(n_species = .N),
by = gene
],
by.x = "id",
by.y = "gene"
)
results_replicative <- merge(
results_replicative,
clustering_replicative,
by.x = "id",
by.y = "gene"

View file

@ -18,6 +18,22 @@ js_link <- JS("function(row, data) {
}")
server <- function(input, output) {
#' Show the customized slider for setting the required number of species.
output$n_species_slider <- renderUI({
sliderInput(
"n_species",
"Required number of species per gene",
min = 0,
max = if (input$species == "all") {
nrow(species)
} else {
length(species_ids_replicative)
},
step = 1,
value = 10
)
})
#' This reactive expression applies all user defined filters as well as the
#' desired ranking weights to the results.
results <- reactive({
@ -40,11 +56,12 @@ server <- function(input, output) {
neural_factor <- neural_weight / total_weight
results[, score := clusteriness_factor * clusteriness +
correlation_factor * r_mean + neural_factor * neural]
correlation_factor * correlation + neural_factor * neural]
# Apply the cut-off score.
# Apply the cut-off score & the required number of species.
results <- results[score >= input$cutoff / 100]
results <- results[n_species >= input$n_species &
score >= input$cutoff / 100]
# Order the results based on their score. The resulting index will be
# used as the "rank".
@ -59,7 +76,7 @@ server <- function(input, output) {
gene,
name,
clusteriness,
r_mean,
correlation,
neural,
score
)],
@ -82,7 +99,7 @@ server <- function(input, output) {
formatPercentage(
dt,
c("clusteriness", "r_mean", "neural", "score"),
c("clusteriness", "correlation", "neural", "score"),
digits = 1
)
})

3
ui.R
View file

@ -17,7 +17,8 @@ ui <- fluidPage(
"Replicatively aging" = "replicative",
"All qualified" = "all"
)
)
),
uiOutput("n_species_slider")
),
wellPanel(
h3("Ranking"),