mirror of
https://github.com/johrpan/geposanui.git
synced 2025-10-26 11:17:24 +01:00
Add experimental neural network
This commit is contained in:
parent
397b8d0ba2
commit
0aa88119d2
4 changed files with 163 additions and 3 deletions
33
init.R
33
init.R
|
|
@ -1,6 +1,7 @@
|
||||||
source("clustering.R")
|
source("clustering.R")
|
||||||
source("correlation.R")
|
source("correlation.R")
|
||||||
source("input.R")
|
source("input.R")
|
||||||
|
source("neural.R")
|
||||||
source("util.R")
|
source("util.R")
|
||||||
|
|
||||||
# Load input data
|
# Load input data
|
||||||
|
|
@ -56,6 +57,24 @@ correlation_replicative <- run_cached(
|
||||||
tpe_old_genes
|
tpe_old_genes
|
||||||
)
|
)
|
||||||
|
|
||||||
|
neural_all <- run_cached(
|
||||||
|
"neural_all",
|
||||||
|
process_neural,
|
||||||
|
distances,
|
||||||
|
all_species,
|
||||||
|
all_genes,
|
||||||
|
tpe_old_genes
|
||||||
|
)
|
||||||
|
|
||||||
|
neural_replicative <- run_cached(
|
||||||
|
"neural_replicative",
|
||||||
|
process_neural,
|
||||||
|
distances,
|
||||||
|
replicative_species,
|
||||||
|
all_genes,
|
||||||
|
tpe_old_genes
|
||||||
|
)
|
||||||
|
|
||||||
# Merge processed data as well as gene information.
|
# Merge processed data as well as gene information.
|
||||||
|
|
||||||
results_all <- merge(
|
results_all <- merge(
|
||||||
|
|
@ -72,6 +91,13 @@ results_all <- merge(
|
||||||
by.y = "gene"
|
by.y = "gene"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
results_all <- merge(
|
||||||
|
results_all,
|
||||||
|
neural_all,
|
||||||
|
by.x = "id",
|
||||||
|
by.y = "gene"
|
||||||
|
)
|
||||||
|
|
||||||
results_replicative <- merge(
|
results_replicative <- merge(
|
||||||
genes,
|
genes,
|
||||||
clustering_replicative,
|
clustering_replicative,
|
||||||
|
|
@ -86,6 +112,13 @@ results_replicative <- merge(
|
||||||
by.y = "gene"
|
by.y = "gene"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
results_replicative <- merge(
|
||||||
|
results_replicative,
|
||||||
|
neural_replicative,
|
||||||
|
by.x = "id",
|
||||||
|
by.y = "gene"
|
||||||
|
)
|
||||||
|
|
||||||
# Rename `id` columns to `gene`.
|
# Rename `id` columns to `gene`.
|
||||||
|
|
||||||
setnames(results_all, "id", "gene")
|
setnames(results_all, "id", "gene")
|
||||||
|
|
|
||||||
110
neural.R
Normal file
110
neural.R
Normal file
|
|
@ -0,0 +1,110 @@
|
||||||
|
library(data.table)
|
||||||
|
library(neuralnet)
|
||||||
|
|
||||||
|
#' Find genes by training a neural network on reference position data.
|
||||||
|
#'
|
||||||
|
#' The result will be a data.table with the following columns:
|
||||||
|
#'
|
||||||
|
#' - `gene` Gene ID of the processed gene.
|
||||||
|
#' - `neural` Output score given by the neural network.
|
||||||
|
#'
|
||||||
|
#' @param distances Distance data to use.
|
||||||
|
#' @param species_ids Species, whose data should be included.
|
||||||
|
#' @param gene_ids Genes to process. This should include the reference genes.
|
||||||
|
#' @param reference_gene_ids Genes to compare to.
|
||||||
|
#' @param seed A seed to get reproducible results.
|
||||||
|
process_neural <- function(distances, species_ids, gene_ids,
|
||||||
|
reference_gene_ids, seed = 726839) {
|
||||||
|
set.seed(seed)
|
||||||
|
gene_count <- length(gene_ids)
|
||||||
|
|
||||||
|
# Prefilter distances by species.
|
||||||
|
distances <- distances[species %chin% species_ids]
|
||||||
|
|
||||||
|
#' Input data for the network. This contains the gene ID as an identifier
|
||||||
|
#' as well as the per-species gene distances as input variables.
|
||||||
|
data <- data.table(gene = gene_ids)
|
||||||
|
|
||||||
|
#' Buffer to keep track of species included in the computation. Species
|
||||||
|
#' from `species_ids` may be excluded if they don't have enough data.
|
||||||
|
species_ids_included <- NULL
|
||||||
|
|
||||||
|
for (species_id in species_ids) {
|
||||||
|
# Make a column specific to this species.
|
||||||
|
|
||||||
|
species_distances <- distances[species == species_id, .(gene, distance)]
|
||||||
|
setnames(species_distances, "distance", species_id)
|
||||||
|
|
||||||
|
# Only include species with at least 25% known values.
|
||||||
|
|
||||||
|
species_distances <- na.omit(species_distances)
|
||||||
|
|
||||||
|
if (nrow(species_distances) >= 0.25 * gene_count) {
|
||||||
|
species_ids_included <- append(species_ids_included, species_id)
|
||||||
|
data <- merge(data, species_distances, all = TRUE)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
# Replace missing data with mean values. The neural network can't handle
|
||||||
|
# NAs in a meaningful way. Choosing extreme values here would result in
|
||||||
|
# heavily biased results. Therefore, the mean value is chosen as a
|
||||||
|
# compromise. However, this will of course lessen the significance of the
|
||||||
|
# results.
|
||||||
|
for (species_id in species_ids_included) {
|
||||||
|
mean_value <- data[, mean(get(species_id), na.rm = TRUE)]
|
||||||
|
|
||||||
|
data[
|
||||||
|
is.na(get(species_id)),
|
||||||
|
eval(quote(species_id)) := round(mean_value)
|
||||||
|
]
|
||||||
|
}
|
||||||
|
|
||||||
|
# Extract the reference genes.
|
||||||
|
|
||||||
|
reference_data <- data[gene %chin% reference_gene_ids]
|
||||||
|
reference_data[, neural := 1.0]
|
||||||
|
|
||||||
|
# Take out random samples from the remaining genes. This is another
|
||||||
|
# compromise with a negative impact on significance. Because there is no
|
||||||
|
# information on genes with are explicitely *not* TPE-OLD genes, we have to
|
||||||
|
# assume that a random sample of genes has a low probability of including
|
||||||
|
# TPE-OLD genes.
|
||||||
|
|
||||||
|
without_reference_data <- data[!gene %chin% reference_gene_ids]
|
||||||
|
|
||||||
|
reference_samples <- without_reference_data[
|
||||||
|
sample(
|
||||||
|
nrow(without_reference_data),
|
||||||
|
nrow(reference_data)
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
|
reference_samples[, neural := 0.0]
|
||||||
|
|
||||||
|
# Merge training data. The training data includes all reference genes as
|
||||||
|
# well as an equal number of random sample genes.
|
||||||
|
training_data <- rbindlist(list(reference_data, reference_samples))
|
||||||
|
|
||||||
|
# Construct and train the neural network.
|
||||||
|
|
||||||
|
nn_formula <- as.formula(sprintf(
|
||||||
|
"neural~%s",
|
||||||
|
paste(species_ids_included, collapse = "+")
|
||||||
|
))
|
||||||
|
|
||||||
|
layer1 <- length(species_ids_included) * 0.66
|
||||||
|
layer2 <- layer1 * 0.66
|
||||||
|
layer3 <- layer2 * 0.66
|
||||||
|
|
||||||
|
nn <- neuralnet(
|
||||||
|
nn_formula,
|
||||||
|
training_data,
|
||||||
|
hidden = c(layer1, layer2, layer3),
|
||||||
|
linear.output = FALSE
|
||||||
|
)
|
||||||
|
|
||||||
|
# Return the resulting scores given by applying the neural network.
|
||||||
|
|
||||||
|
data[, neural := compute(nn, data)$net.result]
|
||||||
|
data[, .(gene, neural)]
|
||||||
|
}
|
||||||
14
server.R
14
server.R
|
|
@ -30,12 +30,14 @@ server <- function(input, output) {
|
||||||
|
|
||||||
clusteriness_weight <- input$clusteriness / 100
|
clusteriness_weight <- input$clusteriness / 100
|
||||||
correlation_weight <- input$correlation / 100
|
correlation_weight <- input$correlation / 100
|
||||||
total_weight <- clusteriness_weight + correlation_weight
|
neural_weight <- input$neural / 100
|
||||||
|
total_weight <- clusteriness_weight + correlation_weight + neural_weight
|
||||||
clusteriness_factor <- clusteriness_weight / total_weight
|
clusteriness_factor <- clusteriness_weight / total_weight
|
||||||
correlation_factor <- correlation_weight / total_weight
|
correlation_factor <- correlation_weight / total_weight
|
||||||
|
neural_factor <- neural_weight / total_weight
|
||||||
|
|
||||||
results[, score := clusteriness_factor * clusteriness +
|
results[, score := clusteriness_factor * clusteriness +
|
||||||
correlation_factor * r_mean]
|
correlation_factor * r_mean + neural_factor * neural]
|
||||||
|
|
||||||
# Apply the cut-off score.
|
# Apply the cut-off score.
|
||||||
|
|
||||||
|
|
@ -55,6 +57,7 @@ server <- function(input, output) {
|
||||||
name,
|
name,
|
||||||
clusteriness,
|
clusteriness,
|
||||||
r_mean,
|
r_mean,
|
||||||
|
neural,
|
||||||
score
|
score
|
||||||
)],
|
)],
|
||||||
rownames = FALSE,
|
rownames = FALSE,
|
||||||
|
|
@ -64,6 +67,7 @@ server <- function(input, output) {
|
||||||
"",
|
"",
|
||||||
"Clusters",
|
"Clusters",
|
||||||
"Correlation",
|
"Correlation",
|
||||||
|
"Neural",
|
||||||
"Score"
|
"Score"
|
||||||
),
|
),
|
||||||
style = "bootstrap",
|
style = "bootstrap",
|
||||||
|
|
@ -73,7 +77,11 @@ server <- function(input, output) {
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
formatPercentage(dt, c("clusteriness", "r_mean", "score"), digits = 1)
|
formatPercentage(
|
||||||
|
dt,
|
||||||
|
c("clusteriness", "r_mean", "neural", "score"),
|
||||||
|
digits = 1
|
||||||
|
)
|
||||||
})
|
})
|
||||||
|
|
||||||
output$synposis <- renderText({
|
output$synposis <- renderText({
|
||||||
|
|
|
||||||
9
ui.R
9
ui.R
|
|
@ -36,6 +36,15 @@ ui <- fluidPage(
|
||||||
step = 1,
|
step = 1,
|
||||||
value = 100
|
value = 100
|
||||||
),
|
),
|
||||||
|
sliderInput(
|
||||||
|
"neural",
|
||||||
|
"Assessment by neural network",
|
||||||
|
post = "%",
|
||||||
|
min = 0,
|
||||||
|
max = 100,
|
||||||
|
step = 1,
|
||||||
|
value = 100
|
||||||
|
),
|
||||||
sliderInput(
|
sliderInput(
|
||||||
"cutoff",
|
"cutoff",
|
||||||
"Cut-off score",
|
"Cut-off score",
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue