geposanui/R/methods.R

142 lines
3.7 KiB
R
Raw Normal View History

2021-10-20 15:34:52 +02:00
# Construct UI for the methods editor.
2022-08-18 09:21:48 +02:00
methods_ui <- function(id, options) {
2022-05-26 12:44:09 +02:00
verticalLayout(
2022-08-18 12:21:00 +02:00
h5("Methods"),
2022-05-26 12:44:09 +02:00
selectInput(
NS(id, "optimization_genes"),
"Genes to optimize for",
choices = list(
"Reference genes" = "reference",
"Comparison genes" = "comparison"
)
),
selectInput(
NS(id, "optimization_target"),
"Optimization target",
choices = list(
"Mean rank" = "mean",
"Median rank" = "median",
"First rank" = "min",
"Last rank" = "max",
"Customize weights" = "custom"
)
),
2022-08-18 09:21:48 +02:00
lapply(options$methods, function(method) {
2022-05-26 12:44:09 +02:00
verticalLayout(
checkboxInput(
NS(id, method$id),
span(
method$description,
class = "control-label"
),
value = TRUE
),
2022-05-26 12:44:09 +02:00
sliderInput(
NS(id, sprintf("%s_weight", method$id)),
NULL,
min = -1.0,
max = 1.0,
step = 0.01,
value = 1.0
)
)
})
)
2021-10-19 16:44:29 +02:00
}
2022-08-18 09:21:48 +02:00
#' Construct server for the methods editor.
#'
#' @param options Global options for the application.
#' @param analysis The reactive containing the results to be weighted.
#' @param comparison_gene_ids The comparison gene IDs.
#'
#' @return A reactive containing the weighted results.
#' @noRd
methods_server <- function(id, options, analysis, comparison_gene_ids) {
2022-05-26 12:44:09 +02:00
moduleServer(id, function(input, output, session) {
# Observe each method's enable button and synchronise the slider state.
2022-08-18 09:21:48 +02:00
lapply(options$methods, function(method) {
2022-05-26 12:44:09 +02:00
observeEvent(input[[method$id]], {
shinyjs::toggleState(
sprintf("%s_weight", method$id),
condition = input[[method$id]]
)
})
2022-05-26 12:44:09 +02:00
shinyjs::onclick(sprintf("%s_weight", method$id), {
updateSelectInput(
session,
"optimization_target",
selected = "custom"
)
})
})
2021-10-19 16:44:29 +02:00
2022-05-26 12:44:09 +02:00
# This reactive will always contain the currently selected optimization
# gene IDs in a normalized form.
optimization_gene_ids <- reactive({
gene_ids <- if (input$optimization_genes == "comparison") {
comparison_gene_ids()
} else {
analysis()$preset$reference_gene_ids
}
2022-05-26 12:44:09 +02:00
sort(unique(gene_ids))
})
2022-05-26 12:44:09 +02:00
# This reactive will always contain the optimal weights according to
# the selected parameters.
optimal_weights <- reactive({
withProgress(message = "Optimizing weights", {
setProgress(0.2)
2022-05-26 12:44:09 +02:00
included_methods <- NULL
2022-08-18 09:21:48 +02:00
for (method in options$methods) {
2022-05-26 12:44:09 +02:00
if (input[[method$id]]) {
included_methods <- c(included_methods, method$id)
}
}
2021-12-16 13:52:14 +01:00
2022-05-26 12:44:09 +02:00
geposan::optimal_weights(
analysis(),
included_methods,
optimization_gene_ids(),
target = input$optimization_target
)
2022-05-26 12:44:09 +02:00
})
}) |> bindCache(
analysis(),
optimization_gene_ids(),
2022-08-18 09:21:48 +02:00
sapply(options$methods, function(method) input[[method$id]]),
2022-05-26 12:44:09 +02:00
input$optimization_target
)
2022-05-26 12:44:09 +02:00
reactive({
weights <- NULL
2021-12-16 13:52:14 +01:00
2022-05-26 12:44:09 +02:00
if (length(optimization_gene_ids()) < 1 |
input$optimization_target == "custom") {
2022-08-18 09:21:48 +02:00
for (method in options$methods) {
2022-05-26 12:44:09 +02:00
if (input[[method$id]]) {
weight <- input[[sprintf("%s_weight", method$id)]]
weights[[method$id]] <- weight
}
}
} else {
weights <- optimal_weights()
2021-12-16 13:52:14 +01:00
2022-05-26 12:44:09 +02:00
for (method_id in names(weights)) {
updateSliderInput(
session,
sprintf("%s_weight", method_id),
value = weights[[method_id]]
)
}
}
2021-10-19 16:44:29 +02:00
2022-05-26 12:44:09 +02:00
geposan::ranking(analysis(), weights)
2021-10-19 16:44:29 +02:00
})
2022-05-26 12:44:09 +02:00
})
2021-10-19 16:44:29 +02:00
}