| 
									
										
										
										
											2021-09-18 23:10:52 +02:00
										 |  |  | library(data.table) | 
					
						
							|  |  |  | library(rlog) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #' Compute the mean correlation coefficient comparing gene distances with a set | 
					
						
							|  |  |  | #' of reference genes. | 
					
						
							|  |  |  | #' | 
					
						
							|  |  |  | #' The result will be a data.table with the following columns: | 
					
						
							|  |  |  | #' | 
					
						
							|  |  |  | #'  - `gene` Gene ID of the processed gene. | 
					
						
							|  |  |  | #'  - `r_mean` Mean correlation coefficient. | 
					
						
							|  |  |  | #' | 
					
						
							|  |  |  | #' @param distances Distance data to use. | 
					
						
							|  |  |  | #' @param species_ids Species, whose data should be included. | 
					
						
							|  |  |  | #' @param gene_ids Genes to process. | 
					
						
							|  |  |  | #' @param reference_gene_ids Genes to compare to. | 
					
						
							|  |  |  | process_correlation <- function(distances, species_ids, gene_ids, | 
					
						
							|  |  |  |                                 reference_gene_ids) { | 
					
						
							|  |  |  |     log_info("Processing genes for correlation") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     results <- data.table(gene = gene_ids) | 
					
						
							|  |  |  |     gene_count <- length(gene_ids) | 
					
						
							|  |  |  |     reference_count <- length(reference_gene_ids) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Prefilter distances by species. | 
					
						
							|  |  |  |     distances <- distances[species %chin% species_ids] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for (i in 1:gene_count) { | 
					
						
							|  |  |  |         gene_id <- gene_ids[i] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         log_info(sprintf( | 
					
						
							|  |  |  |             "[%3i%%] Processing gene \"%s\"", | 
					
						
							|  |  |  |             round(i / gene_count * 100), | 
					
						
							|  |  |  |             gene_id | 
					
						
							|  |  |  |         )) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         gene_distances <- distances[gene == gene_id] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if (nrow(gene_distances) < 12) { | 
					
						
							|  |  |  |             next | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         #' Buffer for the sum of correlation coefficients. | 
					
						
							|  |  |  |         r_sum <- 0 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Correlate with all reference genes but not with the gene itself. | 
					
						
							|  |  |  |         for (reference_gene_id in | 
					
						
							|  |  |  |             reference_gene_ids[reference_gene_ids != gene_id]) { | 
					
						
							|  |  |  |             data <- merge( | 
					
						
							|  |  |  |                 gene_distances, | 
					
						
							|  |  |  |                 distances[gene == reference_gene_id], | 
					
						
							|  |  |  |                 by = "species" | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-09-19 20:19:20 +02:00
										 |  |  |             # Order data by the reference gene's distance to get a monotonic | 
					
						
							|  |  |  |             # relation. | 
					
						
							|  |  |  |             setorder(data, distance.y) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-09-18 23:10:52 +02:00
										 |  |  |             r_sum <- r_sum + abs(cor(data[, distance.x], data[, distance.y])) | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         results[gene == gene_id, r_mean := r_sum / reference_count] | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     results | 
					
						
							|  |  |  | } |