geposanui/process/correlation.R

63 lines
2.1 KiB
R
Raw Normal View History

2021-09-18 23:10:52 +02:00
library(data.table)
#' Compute the mean correlation coefficient comparing gene distances with a set
#' of reference genes.
process_correlation <- function(distances, gene_ids, preset) {
2021-09-18 23:10:52 +02:00
results <- data.table(gene = gene_ids)
reference_gene_ids <- preset$reference_gene_ids
2021-09-18 23:10:52 +02:00
reference_count <- length(reference_gene_ids)
# Prefilter distances by species.
distances <- distances[species %chin% preset$species_ids]
2021-09-18 23:10:52 +02:00
# Add an index for quickly accessing data per gene.
setkey(distances, gene)
2021-09-18 23:10:52 +02:00
# Prepare the reference genes' data.
reference_distances <- distances[gene %chin% reference_gene_ids]
2021-09-18 23:10:52 +02:00
#' Perform the correlation for one gene.
compute <- function(gene_id) {
gene_distances <- distances[gene_id]
gene_species_count <- nrow(gene_distances)
# Return a score of 0.0 if there is just one or no value at all.
if (gene_species_count <= 1) {
return(0.0)
2021-09-18 23:10:52 +02:00
}
#' Buffer for the sum of correlation coefficients.
correlation_sum <- 0
2021-09-18 23:10:52 +02:00
# Correlate with all reference genes but not with the gene itself.
for (reference_gene_id in
reference_gene_ids[reference_gene_ids != gene_id]) {
data <- merge(
gene_distances,
reference_distances[reference_gene_id],
2021-09-18 23:10:52 +02:00
by = "species"
)
# Skip this reference gene, if there are not enough value pairs.
# This will lessen the final score, because it effectively
# represents a correlation coefficient of 0.0.
if (nrow(data) <= 1) {
next
}
2021-09-19 20:19:20 +02:00
# Order data by the reference gene's distance to get a monotonic
# relation.
setorder(data, distance.y)
correlation_sum <- correlation_sum + abs(cor(
data[, distance.x], data[, distance.y],
method = "spearman"
))
2021-09-18 23:10:52 +02:00
}
# Compute the score as the mean correlation coefficient.
score <- correlation_sum / reference_count
2021-09-18 23:10:52 +02:00
}
2021-10-15 09:26:57 +02:00
results[, score := compute(gene), by = 1:nrow(results)]
2021-09-18 23:10:52 +02:00
}